Delegated regulation 2014/134 - Supplement to Regulation 168/2013 with regard to environmental and propulsion unit performance requirements and amending Annex V thereof

1.

Legislative text

21.2.2014   

EN

Official Journal of the European Union

L 53/1

 

COMMISSION DELEGATED REGULATION (EU) No 134/2014

of 16 December 2013

supplementing Regulation (EU) No 168/2013 of the European Parliament and of the Council with regard to environmental and propulsion unit performance requirements and amending Annex V thereof

(Text with EEA relevance)

THE EUROPEAN COMMISSION,

Having regard to the Treaty on the Functioning of the European Union,

Having regard to Regulation (EU) No 168/2013 of the European Parliament and of the Council of 15 January 2013 on the approval and market surveillance of two- or three-wheel vehicles and quadricycles (1), and in particular Article 18(3), Article 23(12), Article 24(3) and Article 74 thereof,

Whereas:

 

(1)

The term ‘L-category vehicles’ covers a wide range of light vehicle types with two, three or four wheels, e.g. powered cycles, two- and three-wheel mopeds, two- and three-wheel motorcycles, motorcycles with side-cars and light four-wheel vehicles (quadricycles) such as on-road quads, all-terrain quads and quadrimobiles.

 

(2)

Regulation (EU) No 168/2013 provides for the possibility of applying regulations of the United Nations Economic Commission for Europe (UNECE) for the purpose of EU whole vehicle type-approval. Under that Regulation, type-approval in accordance with UNECE regulations which apply on a compulsory basis is regarded as EU type-approval.

 

(3)

The compulsory application of UNECE regulations helps avoiding duplication not only of technical requirements but also of certification and administrative procedures. In addition, type-approval that is directly based on internationally agreed standards could improve market access in third countries, in particular those which are contracting parties to the Agreement of the United Nations Economic Commission for Europe concerning the adoption of uniform technical prescriptions for wheeled vehicles, equipment and parts which can be fitted to or be used on wheeled vehicles and the conditions for reciprocal recognition of approvals granted on the basis of these prescriptions (‘Revised 1958 Agreement’), acceded by the Union by Council Decision 97/836/EC (2), and thus enhance the Union industry’s competitiveness. However, to date the available UNECE regulations are either outdated or not existing and therefore these are revisited and upgraded for technical progress.

 

(4)

Therefore, Regulation (EU) No 168/2013 provides for the repeal of several directives concerning the approval of L-category vehicles, their systems, components and separate technical units intended for those vehicles in the areas of environmental and propulsion unit performance requirements. For the purposes of EU type-approval those directives should be replaced first with the provisions of this Regulation. On the long term, when the revisiting process at the level of the UN is finished, equivalent UNECE regulations will be available, which then will allow to replace the text of this Regulation with making reference to those UNECE regulations.

 

(5)

In particular UNECE regulation No 41 on noise emissions of categories L3e and L4e motorcycles was updated in 2011 for technical progress. UNECE regulation No 41 should therefore be made obligatory in EU type-approval legislation and replace Annex III to Chapter 9 of Directive 97/24/EC of the European Parliament and of the Council (3) in order for motorcycles to comply with only one set of motorcycle sound requirements, which are world-wide accepted by the contracting parties to the Revised 1958 Agreement. UNECE regulation No 85 on measurement of net power of electric motors should also be made obligatory with the same objective of mutual recognition between the contracting parties to the Revised 1958 Agreement in the area of propulsion unit performance requirements for electric motors.

 

(6)

The Euro 4 and 5 environmental steps are such measures designed to reduce emissions of particulate matter and ozone precursors such as nitrogen oxides and hydrocarbons. A considerable reduction in hydrocarbon emissions from L-category vehicles is necessary to improve air quality and comply The exhaust system which is granted system type-approval with limit values for pollution, not only directly to significantly reduce the disproportionately high hydrocarbon tailpipe and evaporative emissions from these vehicles, but also to help reduce volatile particle levels in urban areas and possibly also smog.

 

(7)

One of the measures against excessive hydrocarbon emissions from L-category vehicles is to limit the evaporative emissions to the hydrocarbon mass limits laid down in Annex VI(C) to Regulation (EU) No 168/2013. For this purpose, a type IV test has to be conducted at type-approval in order to measure the evaporative emissions of a vehicle. One of the requirements of the type IV Sealed House evaporative Emission Determination (SHED) test is to fit either a rapidly aged carbon canister or alternatively to apply an additive deterioration factor when fitting a degreened carbon canister. It will be investigated in the environmental effect study referred to in Article 23(4) of Regulation (EU) No 168/2013 whether or not it is cost effective to maintain this deterioration factor as alternative to fitting a representative and rapidly aged carbon canister. If the result of the study demonstrates that this method is not cost-effective a proposal will follow in due course to delete this alternative and should become applicable beyond the Euro 5 step.

 

(8)

A standardised method for measuring vehicles’ energy efficiency (fuel or energy consumption, carbon dioxide emissions as well as electric range) is necessary to ensure that no technical barriers to trade arise between Member States and also to ensure that customers and users are supplied with objective and precise information.

 

(9)

The methods for measuring propulsion unit performance including the maximum design vehicle speed, maximum torque and maximum continuous total power of L-category vehicles may differ from one Member State to the next, this might constitute barriers to trade within the Union. Therefore, it is necessary to draw up harmonised requirements for methods for measuring the propulsion unit performance of L-category vehicles in order to enable the approval of vehicles, systems, components or separate technical units to be applied for each type of such vehicle.

 

(10)

Functional safety or environmental requirements call for restrictions on tampering with certain types of L-category vehicles. In order to avoid obstacles to servicing and maintenance by vehicle owners, such restrictions should be strictly limited to tampering which significantly modifies the environmental and propulsion unit performance of the vehicle and functional safety in a harmful way. As harmful tampering of the vehicle’s powertrain affects both the environmental and functional safety performance, the detailed requirements regarding propulsion unit performance and noise abatement set out in this Regulation should also be used as reference for enforcement of powertrain tampering prevention.

 

(11)

Part A of Annex V to Regulation (EU) No 168/2013 makes reference to the 8 test types that allow assessment of the environmental performance of the L-category vehicle to be approved. It is appropriate to set out detailed test requirements in this delegated act as well as to amend Annex V (A) of Regulation (EU) No 168/2013 by linking the test limits agreed by Council and the European Parliament with detailed test procedures and technical requirements set out in this Regulation. A reference to the detailed test procedures and requirements set out in this Regulation should be inserted into Part A of Annex V to Regulation (EU) No 168/2013 by means of the amendments set out in Annex XII of this Regulation.

HAS ADOPTED THIS REGULATION:

CHAPTER I

SUBJECT MATTER AND DEFINITIONS

Article 1

Subject matter

This Regulation establishes the detailed technical requirements and test procedures regarding environmental and propulsion unit performance for the approval of L-category vehicles and the systems, components and separate technical units intended for such vehicles in accordance with Regulation (EU) No 168/2013 and sets out a list of UNECE regulations and amendments thereto.

Article 2

Definitions

The definitions of Regulation (EU) No 168/2013 shall apply. In addition, the following definitions shall apply:

 

(1)

‘WMTC stage 1’ refers to the World harmonised Motorcycle Test Cycle laid down in UNECE Global Technical Regulation No 2 (4) used as alternative type I emission test cycle to the European Driving Cycle as of 2006 for category L3e motorcycle types;

 

(2)

‘WMTC stage 2’ refers to the World harmonised Motorcycle Test Cycle laid down in the amended UNECE Global Technical Regulation No 2 (5) which is used as compulsory type I emission test cycle in the approval of Euro 4 compliant (sub-)categories L3e, L4e, L5e-A and L7e-A vehicles;

 

(3)

‘WMTC stage 3’ refers to the revised WMTC referred to in Annex VI(A) of Regulation (EU) No 168/2013 and is equal to the World harmonised Motorcycle Test Cycle laid down in the amended UNECE Global Technical Regulation No 2 (6) and adapted for vehicles with a low maximum design vehicle speed, which is used as the compulsory type I emission test cycle in the approval of Euro 5 compliant L-category vehicles;

 

(4)

‘maximum design vehicle speed’ means the maximum speed of the vehicle determined in accordance with Article 15 of this Regulation;

 

(5)

‘exhaust emissions’ means tailpipe emissions of gaseous pollutants and particulate matter;

 

(6)

‘particulate filter’ means a filtering device fitted in the exhaust system of a vehicle to reduce particulate matter from the exhaust flow;

 

(7)

‘properly maintained and used’ means that when selecting a test vehicle it satisfies the criteria with regard to a good level of maintenance and normal use according to the recommendations of the vehicle manufacturer for acceptance of such a test vehicle;

 

(8)

‘fuel requirement’ by the engine means the type of fuel normally used by the engine:

 

(a)

petrol (E5);

 

(b)

liquefied petroleum gas (LPG);

 

(c)

NG/biomethane (natural gas);

 

(d)

either petrol (E5) or LPG;

 

(e)

either petrol (E5) or NG/biomethane;

 

(f)

diesel fuel (B5);

 

(g)

mixture of ethanol (E85) and petrol (E5) (flex fuel);

 

(h)

mixture of biodiesel and diesel (B5) (flex fuel);

 

(i)

hydrogen (H2) or a mixture (H2NG) of NG/biomethane and hydrogen;

 

(j)

either petrol (E5) or hydrogen (bi-fuel);

 

(9)

‘environmental performance type-approval’ of a vehicle means the approval of a vehicle type, variant or version with regard to the following conditions:

 

(a)

complying with Parts A and B of Annex V to Regulation (EU) No 168/2013;

 

(b)

falling into one propulsion family according to the criteria set out in Annex XI;

 

(10)

‘vehicle type with regard to environmental performance’ means a set of L-category vehicles which do not differ in the following:

 

(a)

the equivalent inertia determined in relation to the reference mass, in accordance with Appendices 5, 7 or 8 to Annex II;

 

(b)

the propulsion characteristics set out in Annex XI regarding propulsion family;

 

(11)

‘periodically regenerating system’ means a pollution control device such as a catalytic converter, particulate filter or any other pollution control device that requires a periodical regeneration process in less than 4 000 km of normal vehicle operation;

 

(12)

‘alternative fuel vehicle’ means a vehicle designed to run on at least one type of fuel that is either gaseous at atmospheric temperature and pressure, or substantially non-mineral oil derived;

 

(13)

‘flex fuel H2NG vehicle’ means a flex fuel vehicle designed to run on different mixtures of hydrogen and natural gas or biomethane;

 

(14)

‘parent vehicle’ means a vehicle that is representative of a propulsion family set out in Annex XI;

 

(15)

‘pollution-control device type’ means a category of pollution-control devices that are used to control pollutant emissions and that do not differ in their essential environmental performance and design characteristics;

 

(16)

‘catalytic converter’ means an emission pollution-control device which converts toxic by-products of combustion in the ehaust of an engine to less toxic substances by means of catalysed chemical reactions;

 

(17)

‘catalytic converter type’ means a category of catalytic converters that do not differ as regards the following:

 

(a)

number of coated substrates, structure and material;

 

(b)

type of catalytic activity (oxidising, three-way, or of another type of catalytic activity);

 

(c)

volume, ratio of frontal area and substrate length;

 

(d)

catalytic converter material content;

 

(e)

catalytic converter material ratio;

 

(f)

cell density;

 

(g)

dimensions and shape;

 

(h)

thermal protection;

 

(i)

an inseparable exhaust manifold, catalytic converter and muffler integrated in the exhaust system of a vehicle or separable exhaust system units that can be replaced;

 

(18)

‘reference mass’ means the mass in running order of the L-category vehicle determined in accordance with Article 5 of Regulation (EU) No 168/2013 increased with the mass of the driver (75 kg) and if applicable plus the mass of the propulsion battery;

 

(19)

‘drive train’ means the part of the powertrain downstream of the output of the propulsion unit(s) that consists if applicable of the torque converter clutches, the transmission and its control, either a drive shaft or belt drive or chain drive, the differentials, the final drive, and the driven wheel tyre (radius);

 

(20)

‘stop-start system’ means automatic stop and start of the propulsion unit to reduce the amount of idling, thereby reducing fuel consumption, pollutant and CO2 emissions of the vehicle;

 

(21)

‘powertrain software’ means a set of algorithms concerned with the operation of data processing in powertrain control units, propulsion control units or drive-train control units, containing an ordered sequence of instructions that change the state of the control units;

 

(22)

‘powertrain calibration’ means the application of a specific set of data maps and parameters used by the control unit’s software to tune the vehicle’s powertrain, propulsion or drive train unit(s)’s control;

 

(23)

‘powertrain control unit’ means a combined control unit of combustion engine(s), electric traction motors or drive train unit systems including the transmission or the clutch;

 

(24)

‘engine control unit’ means the on-board computer that partly or entirely controls the engine or engines of the vehicle;

 

(25)

‘drive train control unit’ means the on-board computer that partly or entirely controls the drive train of the vehicle;

 

(26)

‘sensor’ means a converter that measures a physical quantity or state and converts it into an electric signal that is used as input to a control unit;

 

(27)

‘actuator’ means a converter of an output signal from a control unit into motion, heat or other physical state in order to control the powertrain, engine(s) or drive train;

 

(28)

‘carburettor’ means a device that blends fuel and air into a mixture that can be combusted in a combustion engine;

 

(29)

‘scavenging port’ means a connector between crankcase and combustion chamber of a two-stroke engine through which the fresh charge of air, fuel and lubrication oil mixture enters the combustion chamber;

 

(30)

‘air intake system’ means a system composed of components allowing the fresh-air charge or air-fuel mixture to enter the engine and includes, if fitted, the air filter, intake pipes, resonator(s), the throttle body and the intake manifold of an engine;

 

(31)

‘turbocharger’ means an exhaust gas turbine-powered centrifugal compressor boosting the amount of air charge into the combustion engine, thereby increasing propulsion unit performance;

 

(32)

‘super-charger’ means an intake air compressor used for forced induction of a combustion engine, thereby increasing propulsion unit performance;

 

(33)

‘fuel cell’ means a converter of chemical energy from hydrogen into electric energy for propulsion of the vehicle;

 

(34)

‘crankcase’ means the spaces in or external to an engine which are connected to the oil sump by internal or external ducts through which gases and vapour can escape;

 

(35)

‘permeability test’ means testing of the losses through the walls of the non-metallic fuel storage and preconditioning the non-metallic fuel storage material prior to fuel storage testing in accordance with Number C8 of Annex II to Regulation (EU) No 168/2013;

 

(36)

‘permeation’ means the losses through the walls of the fuel storage and delivery systems, which is generally tested by determination of the weight losses;

 

(37)

‘evaporation’ means the breathing losses from the fuel storage, fuel delivery system or other sources through which hydrocarbons breathe into the atmosphere;

 

(38)

‘mileage accumulation’ means a representative test vehicle or a fleet of representative test vehicles driving a predefined distance as set out in points (a) or (b) of Article 23(3) to Regulation (EU) No 168/2013 in accordance with the test requirements of Annex VI to this Regulation;

 

(39)

‘electric powertrain’ means a system consisting of one or more electric energy storage devices such as batteries, electromechanical flywheels, super capacitors or other, one or more electric power conditioning devices and one or more electric machines that convert stored electric energy to mechanical energy delivered at the wheels for propulsion of the vehicle;

 

(40)

‘electric range’, means the distance that vehicles powered by an electric powertrain only or by a hybrid electric powertrain with off-vehicle charging can drive electrically on one fully charged battery or other electric energy storage device as measured in accordance with the procedure set out in Appendix 3.3. to Annex VII;

 

(41)

‘OVC range’ means the total distance covered during complete combined cycles run until the energy imparted by external charging of the battery (or other electric energy storage device) is depleted, as measured in accordance with the procedure described in Appendix 3.3. to Annex VII;

 

(42)

‘maximum thirty minutes speed’ of a vehicle means the maximum achievable vehicle speed measured during 30 minutes as a result of the 30 minute power set out in UNECE regulation No 85;

 

(43)

‘propulsion unit performance type-approval’ of a vehicle means the approval of a vehicle type, variant or version with regard to the performance of the propulsion units as regards the following conditions:

 

(a)

the maximum design vehicle speed(s);

 

(b)

the maximum continuous rated torque or maximum net torque;

 

(c)

the maximum continuous rated power or the maximum net power;

 

(d)

the maximum total torque and power in the case of a hybrid application.

 

(44)

‘propulsion type’ means the propulsion units whose characteristics do not differ in any fundamental respect as regards maximum design vehicle speed, maximum net power, maximum continuous rated power and maximum torque;

 

(45)

‘net power’ means the power available on the test bench at the end of the crankshaft or equivalent component of the propulsion unit at the rotation speeds measured by the manufacturer at type-approval, together with the accessories listed in Tables Ap2.1-1 or Ap2.2-1 of Appendix 2 of Annex X, and taking into account the efficiency of the gearbox where the net power can only be measured with the gearbox fitted to the propulsion;

 

(46)

‘maximum net power’ means the maximum net power output from propulsion units that include one or more combustion engines, under full engine load operation;

 

(47)

‘maximum torque’ means the maximum torque value measured under full engine load operation;

 

(48)

‘accessories’ means all apparatus and devices listed in Table Ap2.1-1 or Ap2.2-1 of Annex X.

CHAPTER II

OBLIGATIONS OF THE MANUFACTURER REGARDING THE ENVIRONMENTAL PERFORMANCE OF VEHICLES

Article 3

Fitting and demonstration requirements related to the environmental performance of L-category vehicles

  • 1. 
    The manufacturer shall equip L-category vehicles with systems, components and separate technical units affecting the environmental performance of a vehicle that are designed, constructed and assembled so as to enable the vehicle in normal use and maintained according to the prescriptions of the manufacturer to comply with the detailed technical requirements and testing procedures of this Regulation.
  • 2. 
    The manufacturer shall demonstrate by means of physical demonstration testing to the approval authority that the L-category vehicles made available on the market, registered or entering into service in the Union comply with the detailed technical requirements and test procedures concerning the environmental performance of these vehicles laid down in Articles 5 to 15.
  • 3. 
    Where the manufacturer modifies the characteristics of the emission abatement system or performance of any of the emission-relevant components after the approved vehicle type with regard to environmental performance is placed on the market, the manufacturer shall report this to the approval authority without delay. The manufacturer shall provide evidence to the approval authority that the changed emission abatement system or component characteristics do not result in a worse environmental performance than that demonstrated at type-approval.
  • 4. 
    The manufacturer shall ensure that spare parts and equipment that are made available on the market or are entering into service in the Union comply with the detailed technical requirements and test procedures with respect to the environmental performance of the vehicles referred to in this Regulation. An approved L-category vehicle equipped with such a spare part or equipment shall meet the same test requirements and performance limit values as a vehicle equipped with an original part or equipment satisfying endurance requirements up to and including those set out in Article 22(2), Article 23 and Article 24 of Regulation (EU) No 168/2013.
  • 5. 
    The manufacturer shall ensure that type-approval procedures for verifying conformity of production are followed as regards the detailed environmental and propulsion unit performance requirements laid down in Article 33 of Regulation (EU) No 168/2013 and its Number C3 of Annex II.
  • 6. 
    The manufacturer shall submit to the approval authority a description of the measures taken to prevent tampering with the powertrain management system including the computers controlling the environmental and propulsion unit performance in accordance with Number C1 of Annex II to Regulation (EU) No 168/2013.
  • 7. 
    For hybrid applications or applications equipped with a stop-start system, the manufacturer shall install on the vehicle a ‘service mode’ that makes it possible, subject to environmental and propulsion unit performance testing or inspection, for the vehicle to continuously run the fuel-consuming engine. Where that inspection or test execution requires a special procedure, this shall be detailed in the service manual (or equivalent media). That special procedure shall not require the use of special equipment other than that provided with the vehicle.

Article 4

Application of UNECE regulations

  • 1. 
    The UNECE regulations and amendments thereto set out in Annex I to this Regulation shall apply to environmental and propulsion unit performance type approval.
  • 2. 
    Vehicles with a maximum design vehicle speed ≤ 25 km/h shall meet all the relevant requirements of UNECE regulations applying to vehicles with a maximum vehicle design speed of > 25 km/h.
  • 3. 
    References to vehicle categories L1, L2, L3, L4, L5, L6 and L7 in the UNECE regulations shall be understood as references to vehicle categories L1e, L2e, L3e, L4e, L5e, L6e and L7e respectively under this Regulation, including any sub-categories.

Article 5

Technical specifications, requirements and test procedures with respect to the environmental performance of L-category vehicles

  • 1. 
    The environmental and propulsion unit performance test procedures shall be performed in accordance with the test requirements laid down in this Regulation.
  • 2. 
    The test procedures shall be carried out or witnessed by the approval authority or, if authorised by the approval authority, by the technical service. The manufacturer shall select a representative parent vehicle to demonstrate compliance of the environmental performance of the L-category vehicles to the satisfaction of the approval authority complying with the requirements of Annex XI.
  • 3. 
    The measurement methods and test results shall be reported to the approval authority in the test report format pursuant to Article 32(1) of Regulation (EU) No 168/2013.
  • 4. 
    The environmental performance type-approval regarding test types I, II, III, IV, V, VII and VIII shall extend to different vehicle variants, versions and propulsion types and families, provided that the vehicle version, propulsion or pollution-control system parameters specified in Annex XI are identical or remain within the prescribed and declared tolerances in that Annex.
  • 5. 
    Hybrid applications or applications equipped with a stop-start system shall be tested with the fuel-consuming engine running where specified in the test procedure.

Article 6

Test type I requirements: tailpipe emissions after cold start

The test procedures and requirements applying to test type I on tailpipe emissions after cold start referred to in Part A of Annex V to Regulation (EU) No 168/2013, shall be conducted and verified in accordance with Annex II to this Regulation.

Article 7

Test type II requirements: tailpipe emissions at (increased) idle and at free acceleration

The test procedures and requirements applying to test type II on tailpipe emissions at (increased) idle and at free acceleration referred to in Part A of Annex V to Regulation (EU) No 168/2013, shall be conducted and verified in accordance with Annex III to this Regulation.

Article 8

Test type III requirements: emissions of crankcase gases

The test procedures and requirements applying to test type III on emissions of crankcase gases referred to in Part A of Annex V to Regulation (EU) No 168/2013, shall be conducted and verified in accordance with Annex IV to this Regulation.

Article 9

Test type IV requirements: evaporative emissions

The test procedures and requirements applying to test type IV on evaporative emissions referred to in Part A of Annex V to Regulation (EU) No 168/2013, shall be conducted and verified in accordance with Annex V to this Regulation.

Article 10

Test type V requirements: durability of pollution-control devices

The type V durability of pollution-control devices test procedures and requirements referred to in Part A of Annex V to Regulation (EU) No 168/2013, shall be conducted and verified in accordance with Annex VI to this Regulation.

Article 11

Test type VII requirements: CO2 emissions, fuel consumption, electric energy consumption or electric range

The test procedures and requirements applying to test type VII on energy efficiency with respect to CO2 emissions, fuel consumption, electric energy consumption or electric range referred to in Part A of Annex V to Regulation (EU) No 168/2013, shall be conducted and verified in accordance with Annex VII to this Regulation.

Article 12

Test type VIII requirements: OBD environmental tests

The test procedures and requirements applying to test type VIII on the environmental part of on-board diagnostics (OBD) referred to in Part A of Annex V to Regulation (EU) No 168/2013, shall be conducted and verified in accordance with Annex VIII to this Regulation.

Article 13

Test type IX requirements: sound level

The type test procedures and requirements applying to test type IX on sound level referred to in Part A of Annex V to Regulation (EU) No 168/2013, shall be conducted and verified in accordance with Annex IX to this Regulation.

CHAPTER III

OBLIGATIONS OF MANUFACTURERS REGARDING THE PROPULSION PERFORMANCE OF VEHICLES

Article 14

General obligations

  • 1. 
    Before making an L-category vehicle available on the market, the manufacturer shall demonstrate the propulsion unit performance of the L-category vehicle type to the approval authority in accordance with the requirements laid down in this Regulation.
  • 2. 
    When making an L-category vehicle available on the market or registering it or before its entry into service, the manufacturer shall ensure that the propulsion unit performance of the L-category vehicle type does not exceed that reported to the approval authority in the information folder provided for in Article 27 of Regulation (EU) No 168/2013.
  • 3. 
    The propulsion unit performance of a vehicle equipped with a replacement system, component or separate technical unit shall not exceed that of a vehicle equipped with the original systems, components or separate technical units.

Article 15

Propulsion performance requirements

The test procedures and requirements on propulsion unit performance referred to in Number A2 of Annex II to Regulation (EU) No 168/2013, shall be conducted and verified in accordance with Annex X to this Regulation.

CHAPTER IV

OBLIGATIONS OF THE MEMBER STATES

Article 16

Type-approval of L-category vehicles, their systems, components or separate technical units

  • 1. 
    Where a manufacturer so requests, the national authorities shall not, on grounds relating to the environmental performance of vehicle, refuse to grant an environmental and propulsion unit performance type-approval or national approval for a new type of vehicle, or prohibit the making available on the market, registration, or entry into service of a vehicle, system, component or separate technical unit, where the vehicle concerned complies with Regulation (EU) No 168/2013 and the detailed test requirements laid down in this Regulation.
  • 2. 
    With effect from the dates laid down in Annex IV to Regulation (EU) No 168/2013, national authorities shall, in the case of new vehicles that do not comply with the Euro 4 environmental step set out in Parts A1, B1, C1 and D of Annex VI and Annex VII to Regulation (EU) No 168/2013 or the Euro 5 environmental step set out in Parts A2, B2, C2 and D of Annex VI and Annex VII to Regulation (EU) No 168/2013 consider certificates of conformity containing previous environmental limit values to be no longer valid for the purposes of Article 43(1) of Regulation (EU) No 168/2013 and shall, on grounds relating to emissions, fuel or energy consumption, or the applicable functional safety or vehicle construction requirements, prohibit the making available on the market, registration or entry into service of such vehicles.
  • 3. 
    When applying Article 77(5) of Regulation (EU) No 168/2013, national authorities shall classify the approved vehicle type in accordance with Annex I to that Regulation.

Article 17

Type-approval of replacement pollution-control devices

  • 1. 
    National authorities shall prohibit the making available on the market or installation on a vehicle of new replacement pollution-control devices intended to be fitted on vehicles approved under this Regulation where they are not of a type in respect of which an environmental and propulsion unit performance type-approval has been granted in compliance with Article 23(10) of Regulation (EU) No 168/2013 and with this Regulation.
  • 2. 
    National authorities may continue to grant extensions to EU type-approvals referred to in Article 35 of Regulation (EU) No 168/2013 for replacement pollution-control devices which are of a type in the scope of Directive 2002/24/EC under the terms which originally applied. National authorities shall prohibit the making available on the market or installation on a vehicle of such replacement pollution-control device type unless they are of a type in respect of which a relevant type-approval has been granted.
  • 3. 
    A replacement pollution-control device type intended to be fitted to a vehicle type-approved in compliance with this Regulation shall be tested in accordance with Appendix 10 to Annex II and with Annex VI.
  • 4. 
    Original equipment replacement pollution-control devices which are of a type covered by this Regulation and which are intended to be fitted to a vehicle which the relevant whole vehicle type-approval document refers to, do not need to comply with the test requirements of Appendix 10 to Annex II, provided they fulfil the requirements of point 4 of that Appendix.

CHAPTER V

FINAL PROVISIONS

Article 18

Amendment of Annex V to Regulation (EU) No 168/2013

Part A of Annex V to Regulation (EU) No 168/2013 is amended in accordance with Annex XII.

Article 19

Entry into force

  • 1. 
    This Regulation shall enter into force on the day following that of its publication in the Official Journal of the European Union.
  • 2. 
    It shall apply from 1 January 2016.

This Regulation shall be binding in its entirety and directly applicable in all Member States.

Done at Brussels, 16 December 2013.

For the Commission

The President

José Manuel BARROSO

 

  • (2) 
    Council Decision 97/836/EC of 27 November 1997 with a view to accession by the European Community to the Agreement of the United Nations Economic Commission for Europe concerning the adoption of uniform technical prescriptions for wheeled vehicles, equipment and parts which can be fitted to or be used on wheeled vehicles and the conditions for reciprocal recognition of approvals granted on the basis of these prescriptions (‘Revised 1958 Agreement’) (OJ L 346, 17.12.1997, p. 78).
  • (4) 
    ‘Measurement procedure for two-wheel motorcycles equipped with a positive or compression ignition engine with regard to the emissions of gaseous pollutants, CO2 emissions and fuel consumption (UN document reference ECE/TRANS/180/Add2e of 30 August 2005)’ including amendment 1 (UNECE document reference ECE/TRANS/180a2a1e of 29 January 2008).
  • (5) 
    The WMTC stage 2 is equal to the WMTC stage 1 amended by corrigendum 2 of addendum 2 (ECE/TRANS/180a2c2e of 9 September 2009) and corrigendum 1 of amendment 1 (ECE/TRANS/180a2a1c1e of 9 September 2009).
  • (6) 
    In addition, the corrigenda and amendments identified in the environmental effect study referred to in Article 23 of Regulation (EU) No 168/2013 will be taken into account, as well as corrigenda and amendments proposed and adopted by UNECE WP29 as continuous improvement of the world-harmonised test cycle for L-category vehicles.
 

LIST OF ANNEXES

 

Annex Number

Annex title

Page

I

List of UNECE regulations which apply on a compulsory basis

11

II

Test type I requirements: tailpipe emissions after cold start

12

III

Test type II requirements: tailpipe emissions at (increased) idle and free acceleration

159

IV

Test type III requirements: emissions of crankcase gases

163

V

Test type IV requirements: evaporative emissions

167

VI

Test type V requirements: durability of pollution-control devices

188

VII

Test type VII requirements; CO2 emissions, fuel consumption, electric energy consumption and electric range

207

VIII

Test type VIII requirements: OBD environmental tests

240

IX

Test type IX requirements: sound level

245

X

Testing procedures and technical requirements as regards propulsion unit performance

288

XI

Vehicle propulsion family with regard to environmental performance demonstration testing

320

XII

Amendment of Part A of Annex V to Regulation (EU) No 168/2013

326

ANNEX I

List of UNECE regulations which apply on a compulsory basis

 

UNECE regulation No

Subject

Series of amendments

OJ Reference

Applicability

41

Noise emissions of motorcycles

04

OJ L 317, 14.11.2012, p. 1

L3e, L4e

Explanatory note:

The fact that a system or component is included in this list does not make its installation mandatory. For certain components, however, mandatory installation requirements are laid down in other annexes to this Regulation.

ANNEX II

Test type I requirements: tailpipe emissions after cold start

 

Appendix Number

Appendix title

Page

1

Symbols used in Annex II

74

2

Reference fuels

78

3

Chassis dynamometer system

85

4

Exhaust dilution system

91

5

Classification of equivalent inertia mass and running resistance

103

6

Driving cycles for type I tests

106

7

Road tests of L-category vehicles equipped with one wheel on the driven axle or with twinned wheels for the determination of test bench settings

153

8

Road tests of L-category vehicles equipped with two or more wheels on the powered axle for the determination of test bench settings

160

9

Explanatory note on the gearshift procedure for a type I test

168

10

Type-approval tests of a replacement pollution-control device type for L-category vehicles as a separate technical unit

174

11

Type I test procedure for hybrid L-category vehicles

178

12

Type I test procedure for L-category vehicles fuelled with LPG, NG/biomethane, flex fuel H2NG or hydrogen

189

13

Type I test procedure for L-category vehicles equipped with a periodically regenerating system

193

  • 1. 
    Introduction
 

1.1.

This Annex sets out the procedure for type I testing, as referred to in Part A of Annex V to Regulation (EU) No 168/2013.

 

1.2.

This Annex provides a harmonised method for the determination of the levels of gaseous pollutant emissions and particulate matter, the emissions of carbon dioxide and is referred to in Annex VII to determine the fuel consumption, energy consumption and electric range of the L-category vehicle within the scope of Regulation (EU) No 168/2013 that are representative for real world vehicle operation.

 

1.1.1.

The ‘WMTC stage 1’ was introduced in EU type-approval legislation in 2006, which allowed manufacturers from then on to demonstrate the emission performance of the L3e motorcycle type by using the world harmonised motorcycle test cycle (WMTC) set out in UN GTR No 2 as alternative type I test to the use of the conventional European Driving Cycle (EDC) set out in Chapter 5 of Directive 97/24/EC.

 

1.1.2.

The ‘WMTC stage 2’ is equal to ‘WMTC stage 1’ with additional enhancements in the area of gear shift prescriptions and shall be used as compulsory type I test to approve Euro 4 compliant (sub-)categories L3e, L4e, L5e-A and L7e-A vehicles.

 

1.1.3.

The ‘revised WMTC’ or ‘WMTC stage 3’ is equal to ‘WMTC stage 2’ for L3e motorcycles, but contains also custom-tailored driving cycles for all other (sub-) category vehicles, used as type I test to approve Euro 5 compliant L-category vehicles.

 

1.2.

The results may form the basis for limiting gaseous pollutants, carbon dioxide and for the fuel consumption, energy consumption and electric range indicated by the manufacturer within the environmental performance type-approval procedures.

  • 2. 
    General requirements
 

2.1.

The components liable to affect the emission of gaseous pollutants, carbon dioxide emissions and fuel consumption shall be so designed, constructed and assembled as to enable the vehicle in normal use, despite the vibration to which it may be subjected, to comply with the provisions of this Annex.

Note 1: The symbols used in Annex II are summarised in Appendix 1.

 

2.2.

Any hidden strategy that ‘optimises’ the powertrain of the vehicle running the relevant emission laboratory test cycle in an advantageous way, reducing tailpipe emissions and running significantly differently under real-world conditions, is considered a defeat strategy and is prohibited, unless the manufacturer has documented and declared it to the satisfaction of the approval authority.

  • 3. 
    Performance requirements

The applicable performance requirements for EU type-approval are referred to in Parts A, B and C of Annex VI to Regulation (EU) No 168/2013.

  • 4. 
    Test conditions

4.1.   Test room and soak area

4.1.1.   Test room

The test room with the chassis dynamometer and the gas sample collection device shall have a temperature of 298,2 ± 5 K (25 ± 5 °C). The room temperature shall be measured in the vicinity of the vehicle cooling blower (fan) before and after the type I test.

4.1.2.   Soak area

The soak area shall have a temperature of 298,2 ± 5 K (25 ± 5 °C) and be such that the test vehicle to be preconditioned can be parked in accordance with point 5.2.4. of this Annex.

4.2.   Test vehicle

4.2.1.   General

All components of the test vehicle shall conform to those of the production series or, if the vehicle is different from the production series, a full description shall be given in the test report. In selecting the test vehicle, the manufacturer and the technical service shall agree to the satisfaction of the approval authority which tested parent vehicle is representative of the related vehicle propulsion family as laid down in Annex XI.

4.2.2.   Run-in

The vehicle shall be presented in good mechanical condition, properly maintained and used. It shall have been run in and driven at least 1 000 km before the test. The engine, drive train and vehicle shall be properly run in, in accordance with the manufacturer’s requirements.

4.2.3.   Adjustments

The test vehicle shall be adjusted in accordance with the manufacturer’s requirements, e.g. as regards the viscosity of the oils, or, if it differs from the production series, a full description shall be given in the test report. In case of a four by four drive, the axle to which the lowest torque is delivered may be deactivated in order to allow testing on a standard chassis dynamometer.

4.2.4.   Test mass and load distribution

The test mass, including the masses of the rider and the instruments, shall be measured before the beginning of the tests. The load shall be distributed across the wheels in conformity with the manufacturer’s instructions.

4.2.5.   Tyres

The tyres shall be of a type specified as original equipment by the vehicle manufacturer. The tyre pressures shall be adjusted to the specifications of the manufacturer or to those where the speed of the vehicle during the road test and the vehicle speed obtained on the chassis dynamometer are equalised. The tyre pressure shall be indicated in the test report.

4.3.   L-category vehicle sub-classification

Figure 1-1 provides a graphical overview of the L-category vehicle sub-classification in terms of engine capacity and maximum vehicle speed if subject to environmental test types I, VII and VIII, indicated by the (sub-)class numbers in the graph areas. The numerical values of the engine capacity and maximum vehicle speed shall not be rounded up or down.

Figure 1-1

L-category vehicle sub-classification for environmental testing, test types I, VII and VIII

4.3.1.   Class 1

L-category vehicles that fulfil the following specifications belong to class 1:

Table 1-1

sub-classification criteria for class 1 L-category vehicles

 

engine capacity < 150 cm3 and vmax< 100 km/h

class 1

4.3.2.   Class 2

L-category vehicles that fulfil the following specifications belong to class 2 and shall be sub-classified in:

Table 1-2

sub-classification criteria for class 2 L-category vehicles

 

Engine capacity < 150 cm3 and 100 km/h ≤ vmax< 115 km/h or engine capacity ≥150 cm3 and vmax< 115 km/h

sub-class 2-1

115 km/h ≤ vmax< 130 km/h

sub-class 2-2

4.3.3.   Class 3

L-category vehicles that fulfil the following specifications belong to class 3 and shall be sub-classified in:

Table 1-3

sub-classification criteria for class 3 L-category vehicles

 

130 ≤ vmax< 140 km/h

subclass 3-1

vmax ≥ 140 km/h or engine capacity > 1 500 cm3

subclass 3-2

4.3.4.   WMTC, test cycle parts

The WMTC test cycle (vehicle speed patterns) for type I, VII and VIII environmental tests consist of up to three parts as set out in Appendix 6. Depending on the L-vehicle category subject to the WMTC laid down in point 4.5.4.1. and its classification in terms of engine displacement and maximum design vehicle speed in accordance with point 4.3, the following WMTC test cycle parts must be run:

Table 1-4

WMTC test cycle parts for class 1.2 and 3 L-category vehicles

 

L-category vehicle (sub-)class

Applicable parts of the WMTC as specified in Appendix 6

Class 1:

part 1, reduced vehicle speed in cold condition, followed by part 1, reduced vehicle speed in warm condition.

Class 2 subdivided in:

Sub-class 2-1:

part 1, reduced vehicle speed in cold condition, followed by part 2, reduced vehicle speed in warm condition.

Sub-class 2-2:

part 1, in cold condition, followed by part 2, in warm condition.

Class 3 subdivided in:

Sub-class 3-1:

part 1, in cold condition, followed by part 2, in warm condition, followed by part 3, reduced vehicle speed in warm condition.

Sub-class 3-2:

part 1, in cold condition, followed by part 2, in warm condition, followed by part 3, in warm condition.

4.4.   Specification of the reference fuel

The appropriate reference fuels as specified in Appendix 2 shall be used for testing. For the purpose of the calculation referred to in point 1.4 of Appendix 1 of Annex VII, for liquid fuels, the density measured at 288,2 K (15 °C) shall be used.

4.5.   Type I test

4.5.1.   Driver

The test driver shall have a mass of 75 kg ± 5 kg.

4.5.2.   Test bench specifications and settings

4.5.2.1.   The dynamometer shall have a single roller for two-wheel L-category vehicles with a diameter of at least 400 mm. A chassis dynamometer equipped with dual rollers is permitted when testing tricycles with two front wheels or quadricycles.

4.5.2.2.   The dynamometer shall be equipped with a roller revolution counter for measuring actual distance travelled.

4.5.2.3.   Dynamometer flywheels or other means shall be used to simulate the inertia specified in point 5.2.2.

4.5.2.4.   The dynamometer rollers shall be clean, dry and free from anything which might cause the tyre to slip.

4.5.2.5.   Cooling fan specifications as follows:

 

4.5.2.5.1.

Throughout the test, a variable-speed cooling blower (fan) shall be positioned in front of the vehicle so as to direct the cooling air onto it in a manner that simulates actual operating conditions. The blower speed shall be such that, within the operating range of 10 to 50 km/h, the linear velocity of the air at the blower outlet is within ±5 km/h of the corresponding roller speed. At the range of over 50 km/h, the linear velocity of the air shall be within ± 10 percent. At roller speeds of less than 10 km/h, air velocity may be zero.

 

4.5.2.5.2.

The air velocity referred to in point 4.5.2.5.1. shall be determined as an averaged value of nine measuring points which are located at the centre of each rectangle dividing the whole of the blower outlet into nine areas (dividing both horizontal and vertical sides of the blower outlet into three equal parts). The value at each of the nine points shall be within 10 percent of the average of the nine values.

 

4.5.2.5.3.

The blower outlet shall have a cross-section area of at least 0.4 m2 and the bottom of the blower outlet shall be between 5 and 20 cm above floor level. The blower outlet shall be perpendicular to the longitudinal axis of the vehicle, between 30 and 45 cm in front of its front wheel. The device used to measure the linear velocity of the air shall be located at between 0 and 20 cm from the air outlet.

4.5.2.6.   The detailed requirements regarding test bench specifications are listed in Appendix 3.

4.5.3.   Exhaust gas measurement system

4.5.3.1.   The gas-collection device shall be a closed-type device that can collect all exhaust gases at the vehicle exhaust outlets on condition that it satisfies the backpressure condition of ± 125 mm H2O. An open system may be used if it is confirmed that all the exhaust gases are collected. The gas collection shall be such that there is no condensation which could appreciably modify the nature of exhaust gases at the test temperature. An example of a gas-collection device is illustrated in Figure 1-2:

Figure 1-2

Equipment for sampling the gases and measuring their volume

Image

4.5.3.2.   A connecting tube shall be placed between the device and the exhaust gas sampling system. This tube and the device shall be made of stainless steel, or of some other material which does not affect the composition of the gases collected and which withstands the temperature of these gases.

4.5.3.3.   A heat exchanger capable of limiting the temperature variation of the diluted gases in the pump intake to ± 5 K shall be in operation throughout the test. This exchanger shall be equipped with a preheating system capable of bringing the exchanger to its operating temperature (with the tolerance of ± 5 K) before the test begins.

4.5.3.4.   A positive displacement pump shall be used to draw in the diluted exhaust mixture. This pump shall be equipped with a motor with several strictly controlled uniform speeds. The pump capacity shall be large enough to ensure the intake of the exhaust gases. A device using a critical-flow venturi (CFV) may also be used.

4.5.3.5.   A device (T) shall be used for the continuous recording of the temperature of the diluted exhaust mixture entering the pump.

4.5.3.6.   Two gauges shall be used, the first to ensure the pressure depression of the dilute exhaust mixture entering the pump relative to atmospheric pressure, and the second to measure the dynamic pressure variation of the positive displacement pump.

4.5.3.7.   A probe shall be located near to, but outside, the gas-collecting device, to collect samples of the dilution air stream through a pump, a filter and a flow meter at constant flow rates throughout the test.

4.5.3.8.   A sample probe pointed upstream into the dilute exhaust mixture flow, upstream of the positive displacement pump, shall be used to collect samples of the dilute exhaust mixture through a pump, a filter and a flow meter at constant flow rates throughout the test. The minimum sample flow rate in the sampling devices shown in Figure 1-2 and in point 4.5.3.7. shall be at least 150 litre/hour.

4.5.3.9.   Three-way valves shall be used on the sampling system described in points 4.5.3.7. and 4.5.3.8. to direct the samples either to their respective bags or to the outside throughout the test.

4.5.3.10.   Gas-tight collection bags

4.5.3.10.1.   For dilution air and dilute exhaust mixture the collection bags shall be of sufficient capacity not to impede normal sample flow and shall not change the nature of the pollutants concerned.

4.5.3.10.2.   The bags shall have an automatic self-locking device and shall be easily and tightly fastened either to the sampling system or the analysing system at the end of the test.

4.5.3.11.   A revolution counter shall be used to count the revolutions of the positive displacement pump throughout the test.

Note 2: Attention shall be paid to the connecting method and the material or configuration of the connecting parts, because each section (e.g. the adapter and the coupler) of the sampling system can become very hot. If the measurement cannot be performed normally due to heat damage to the sampling system, an auxiliary cooling device may be used as long as the exhaust gases are not affected.

Note 3: With open type devices, there is a risk of incomplete gas collection and gas leakage into the test cell. There shall be no leakage throughout the sampling period.

Note 4: If a constant volume sampler (CVS) flow rate is used throughout the test cycle that includes low and high speeds all in one (i.e. part 1, 2 and 3 cycles), special attention shall be paid to the higher risk of water condensation in the high speed range.

4.5.3.12.   Particulate mass emissions measurement equipment

4.5.3.12.1   Specification

4.5.3.12.1.1.   System overview

4.5.3.12.1.1.1.   The particulate sampling unit shall consist of a sampling probe located in the dilution tunnel, a particle transfer tube, a filter holder, a partial-flow pump, and flow rate regulators and measuring units.

4.5.3.12.1.1.2.   It is recommended that a particle size pre-classifier (e.g. cyclone or impactor) be employed upstream of the filter holder. However, a sampling probe, used as an appropriate size-classification device such as that shown in Figure 1-6, is acceptable.

4.5.3.12.1.2.   General requirements

4.5.3.12.1.2.1.   The sampling probe for the test gas flow for particulates shall be so arranged within the dilution tract that a representative sample gas flow can be taken from the homogeneous air/exhaust mixture.

4.5.3.12.1.2.2.   The particulate sample flow rate shall be proportional to the total flow of diluted exhaust gas in the dilution tunnel to within a tolerance of ±5 percent of the particulate sample flow rate.

4.5.3.12.1.2.3.   The sampled dilute exhaust gas shall be maintained at a temperature below 325,2 K (52 °C) within 20 cm upstream or downstream of the particulate filter face, except in the case of a regeneration test, where the temperature shall be below 465,2 K (192 °C).

4.5.3.12.1.2.4.   The particulate sample shall be collected on a single filter mounted in a holder in the sampled diluted exhaust gas flow

4.5.3.12.1.2.5.   All parts of the dilution system and the sampling system from the exhaust pipe up to the filter holder which are in contact with raw and diluted exhaust gas shall be designed to minimise deposition or alteration of the particulates. All parts shall be made of electrically conductive materials that do not react with exhaust gas components, and shall be electrically grounded to prevent electrostatic effects.

4.5.3.12.1.2.6.   If it is not possible to compensate for variations in the flow rate, provision shall be made for a heat exchanger and a temperature control device as specified in Appendix 4 so as to ensure that the flow rate in the system is constant and the sampling rate accordingly proportional.

4.5.3.12.1.3.   Specific requirements

4.5.3.12.1.3.1.   Particulate matter (PM) sampling probe

4.5.3.12.1.3.1.1.   The sample probe shall deliver the particle-size classification performance described in point 4.5.3.12.1.3.1.4. It is recommended that this performance be achieved by the use of a sharp-edged, open-ended probe facing directly in the direction of flow, plus a pre-classifier (cyclone impactor, etc.). An appropriate sampling probe, such as that indicated in Figure 1-1, may alternatively be used provided it achieves the pre-classification performance described in point 4.5.3.12.1.3.1.4.

4.5.3.12.1.3.1.2.   The sample probe shall be installed near the tunnel centreline between ten and 20 tunnel diameters downstream of the exhaust gas inlet to the tunnel and have an internal diameter of at least 12 mm.

If more than one simultaneous sample is drawn from a single sample probe, the flow drawn from that probe shall be split into identical sub-flows to avoid sampling artefacts.

If multiple probes are used, each probe shall be sharp-edged, open-ended and facing directly into the direction of flow. Probes shall be equally spaced at least 5 cm apart around the central longitudinal axis of the dilution tunnel.

4.5.3.12.1.3.1.3.   The distance from the sampling tip to the filter mount shall be at least five probe diameters, but shall not exceed 1 020 mm.

4.5.3.12.1.3.1.4.   The pre-classifier (e.g. cyclone, impactor, etc.) shall be located upstream of the filter holder assembly. The pre-classifier 50 percent cut point particle diameter shall be between 2.5 μm and 10 μm at the volumetric flow rate selected for sampling particulate mass emissions. The pre-classifier shall allow at least 99 percent of the mass concentration of 1 μm particles entering the pre-classifier to pass through the exit of the pre-classifier at the volumetric flow rate selected for sampling particulate mass emissions. However, a sampling probe, used as an appropriate size-classification device, such as that shown in Figure 1-6, is acceptable as an alternative to a separate pre-classifier.

4.5.3.12.1.3.2.   Sample pump and flow meter

4.5.3.12.1.3.2.1.   The sample gas flow measurement unit shall consist of pumps, gas flow regulators and flow measuring units.

4.5.3.12.1.3.2.2.   The temperature of the gas flow in the flow meter may not fluctuate by more than ±3 K, except during regeneration tests on vehicles equipped with periodically regenerating after-treatment devices. In addition, the sample mass flow rate shall remain proportional to the total flow of diluted exhaust gas to within a tolerance of ± 5 percent of the particulate sample mass flow rate. Should the volume of flow change unacceptably as a result of excessive filter loading, the test shall be stopped. When the test is repeated, the rate of flow shall be decreased.

4.5.3.12.1.3.3.   Filter and filter holder

4.5.3.12.1.3.3.1.   A valve shall be located downstream of the filter in the direction of flow. The valve shall be responsive enough to open and close within one second of the start and end of the test.

4.5.3.12.1.3.3.2.   It is recommended that the mass collected on the 47 mm diameter filter (Pe) is ≥ 20 μg and that the filter loading is maximised in line with the requirements of points 4.5.3.12.1.2.3. and 4.5.3.12.1.3.3.

4.5.3.12.1.3.3.3.   For a given test, the gas filter face velocity shall be set to a single value within the range 20 cm/s to 80 cm/s, unless the dilution system is being operated with sampling flow proportional to CVS flow rate.

4.5.3.12.1.3.3.4.   Fluorocarbon coated glass fibre filters or fluorocarbon membrane filters are required. All filter types shall have a 0,3 μm DOP (di-octylphthalate) or PAO (poly-alpha-olefin) CS 68649-12-7 or CS 68037-01-4 collection efficiency of at least 99 percent at a gas filter face velocity of 5,33 cm/s.

4.5.3.12.1.3.3.5.   The filter holder assembly shall be of a design that provides an even flow distribution across the filter stain area. The filter stain area shall be at least 1 075 mm2.

4.5.3.12.1.3.4.   Filter weighing chamber and balance

4.5.3.12.1.3.4.1.   The microgram balance used to determine the weight of a filter shall have a precision (standard deviation) of 2 μg and resolution of 1 μg or better.

It is recommended that the microbalance be checked at the start of each weighing session by weighing one reference weight of 50 mg. This weight shall be weighed three times and the average result recorded. The weighing session and balance are considered valid if the average result of the weighing is within ± 5 μg of the result from the previous weighing session.

The weighing chamber (or room) shall meet the following conditions during all filter conditioning and weighing operations:

 

Temperature maintained at 295,2 ± 3 K (22 ± 3 °C);

 

Relative humidity maintained at 45 ± 8 percent;

 

Dew point maintained at 282,7 ± 3 K (9,5 ± 3 °C).

It is recommended that temperature and humidity conditions be recorded along with sample and reference filter weights.

4.5.3.12.1.3.4.2.   Buoyancy correction

All filter weights shall be corrected for filter buoyancy in air.

The buoyancy correction depends on the density of the sample filter medium, the density of air, and the density of the calibration weight used to calibrate the balance. The density of the air is dependent on the pressure, temperature and humidity.

It is recommended that the temperature and dew point of the weighing environment be controlled to 295,2 K ± 1 K (22 °C ± 1 °C) and 282,7 ± 1 K (9,5 ± 1 °C) respectively. However, the minimum requirements stated in point 4.5.3.12.1.3.4.1. will also result in an acceptable correction for buoyancy effects. The correction for buoyancy shall be applied as follows:

Equation 2-1:

Formula

where:

 

mcorr

=

PM mass corrected for buoyancy

muncorr

=

PM mass uncorrected for buoyancy

ρair

=

density of air in balance environment

ρweight

=

density of calibration weight used to span balance

ρmedia

=

density of PM sample medium (filter) with filter medium Teflon coated glass fibre (e.g. TX40): ρmedia = 2,300 kg/m3

ρair can be calculated as follows:

Equation 2-2:

Formula

where:

 

Pabs

=

absolute pressure in balance environment

Mmix

=

molar mass of air in balance environment (28,836 gmol-1)

R

=

molar gas constant (8,314 Jmol-1K-1)

Tamb

=

absolute ambient temperature of balance environment

The chamber (or room) environment shall be free of any ambient contaminants (such as dust) that would settle on the particulate filters during their stabilisation.

Limited deviations from weighing room temperature and humidity specifications shall be allowed provided their total duration does not exceed 30 minutes in any one filter conditioning period. The weighing room shall meet the required specifications prior to personal entrance into the weighing room. No deviations from the specified conditions are permitted during the weighing operation.

4.5.3.12.1.3.4.3.   The effects of static electricity shall be nullified. This may be achieved by grounding the balance through placement on an antistatic mat and neutralisation of the particulate filters prior to weighing using a Polonium neutraliser or a device of similar effect. Alternatively, nullification of static effects may be achieved through equalisation of the static charge.

4.5.3.12.1.3.4.4.   A test filter shall be removed from the chamber no earlier than an hour before the test begins.

4.5.3.12.1.4.   Recommended system description

Figure 1-3 is a schematic drawing of the recommended particulate sampling system. Since various configurations can produce equivalent results, exact conformity with this figure is not required. Additional components such as instruments, valves, solenoids, pumps and switches may be used to provide additional information and coordinate the functions of component systems. Further components that are not needed to maintain accuracy with other system configurations may be excluded if their exclusion is based on good engineering judgment.

Figure 1-3

Particulate sampling system

Image

A sample of the diluted exhaust gas is taken from the full flow dilution tunnel (DT) through the particulate sampling probe (PSP) and the particulate transfer tube (PTT) by means of the pump (P). The sample is passed through the particle size pre-classifier (PCF) and the filter holders (FH) that contain the particulate sampling filters. The flow rate for sampling is set by the flow controller (FC).

4.5.4.   Driving schedules

4.5.4.1.   Test cycles

Test cycles (vehicle speed patterns) for the type I test consist of up to three parts, as laid down in Appendix 6. Depending on the vehicle (sub-)category, the following test cycle parts must be run:

Table 1-5

Applicable test type I cycle for Euro 4 compliant vehicles

 

Vehicle category

Vehicle category name

Test cycle Euro 4

L1e-A

Powered cycle

ECE R47

L1e-B

Two-wheel moped

L2e

Three-wheel moped

L6e-A

Light on-road quad

L6e-B

Light quadri-mobile

L3e

Two-wheel motorcycle with and without side-car

WMTC, stage 2

L4e

L5e-A

Tricycle

L7e-A

Heavy on-road quad

L5e-B

Commercial tricycle

ECE R40

L7e-B

Heavy all terrain quad

L7e-C

Heavy quadri-mobile

Table 1-6

Applicable test type I cycle for Euro 5 compliant vehicles

 

Vehicle category

Vehicle category name

Test cycle Euro 5

L1e-A

Powered cycle

Revised WMTC

L1e-B

Two-wheel moped

L2e

Three-wheel moped

L6e-A

Light on-road quad

L6e-B

Light quadri-mobile

L3e

Two-wheel motorcycle with and without side-car

L4e

L5e-A

Tricycle

L7e-A

Heavy on-road quad

L5e-B

Commercial tricycle

L7e-B

Heavy all terrain quad

L7e-C

Heavy quadri-mobile

4.5.4.2.   Vehicle speed tolerances

4.5.4.2.1.   The vehicle speed tolerance at any given time on the test cycles prescribed in point 4.5.4.1. is defined by upper and lower limits. The upper limit is 3,2 km/h higher than the highest point on the trace within one second of the given time. The lower limit is 3,2 km/h lower than the lowest point on the trace within one second of the given time. Vehicle speed variations greater than the tolerances (such as may occur during gear changes) are acceptable provided they occur for less than two seconds on any occasion. Vehicle speeds lower than those prescribed are acceptable provided the vehicle is operated at maximum available power during such occurrences. Figure 1-4 shows the range of acceptable vehicle speed tolerances for typical points.

Figure 1-4

Drivers trace, allowable range

Image

Image

4.5.4.2.2.   If the acceleration capability of the vehicle is not sufficient to carry out the acceleration phases or if the maximum design speed of the vehicle is lower than the prescribed cruising speed within the prescribed limits of tolerances, the vehicle shall be driven with the throttle fully open until the set speed is reached or at the maximum design speed achievable with fully opened throttle during the time that the set speed exceeds the maximum design speed. In both cases, point 4.5.4.2.1. is not applicable. The test cycle shall be carried on normally when the set speed is again lower than the maximum design speed of the vehicle.

4.5.4.2.3.   If the period of deceleration is shorter than that prescribed for the corresponding phase, the set speed shall be restored by a constant vehicle speed or idling period merging into succeeding constant speed or idling operation. In such cases, point 4.5.4.2.1. is not applicable.

4.5.4.2.4.   Apart from these exceptions, the deviations of the roller speed from the set speed of the cycles shall meet the requirements described in point 4.5.4.2.1. If not, the test results shall not be used for further analysis and the run must be repeated.

4.5.5.   Gearshift prescriptions for the WMTC prescribed in Appendix 6

4.5.5.1.   Test vehicles with automatic transmission

4.5.5.1.1.   Vehicles equipped with transfer cases, multiple sprockets, etc., shall be tested in the configuration recommended by the manufacturer for street or highway use.

4.5.5.1.2.   All tests shall be conducted with automatic transmissions in ‘Drive’ (highest gear). Automatic clutch-torque converter transmissions may be shifted as manual transmissions at the request of the manufacturer.

4.5.5.1.3.   Idle modes shall be run with automatic transmissions in ‘Drive’ and the wheels braked.

4.5.5.1.4.   Automatic transmissions shall shift automatically through the normal sequence of gears. The torque converter clutch, if applicable, shall operate as under real-world conditions.

4.5.5.1.5.   The deceleration modes shall be run in gear using brakes or throttle as necessary to maintain the desired speed.

4.5.5.2.   Test vehicles with manual transmission

4.5.5.2.1   Mandatory requirements

4.5.5.2.1.1.   Step 1 — Calculation of shift speeds

Upshift speeds (v1→2 and vi→i+1) in km/h during acceleration phases shall be calculated using the following formulae:

Equation 2-3:

Formula

Equation 2-4:

Formula, i = 2 to ng -1

where:

 
 

‘i’ is the gear number (≥ 2)

 
 

‘ng’ is the total number of forward gears

 
 

‘Pn’ is the rated power in kW

 
 

‘mk’ is the reference mass in kg

 
 

‘nidle’ is the idling speed in min-1

 
 

‘s’ is the rated engine speed in min-1

 
 

‘ndvi’ is the ratio between engine speed in min-1 and vehicle speed in km/h in gear ‘i’

4.5.5.2.1.2.   Downshift speeds (vi→i-1) in km/h during cruise or deceleration phases in gears 4 (4th gear) to ng shall be calculated using the following formula:

Equation 2-5:

Formula, i = 4 to ng

where:

 
 

i is the gear number (≥ 4)

 
 

ng is the total number of forward gears

 
 

Pn is the rated power in kW

 
 

mk is the reference mass in kg

 
 

nidle is the idling speed in min-1

 
 

s is the rated engine speed in min-1

 
 

ndvi-2 is the ratio between engine speed in min-1 and vehicle speed in km/h in gear i-2

The downshift speed from gear 3 to gear 2 (v3→2) shall be calculated using the following equation:

Equation 2-6:

Formula

where:

 
 

Pn is the rated power in kW

 
 

mk is the reference mass in kg

 
 

nidle is the idling speed in min-1

 
 

s is the rated engine speed in min-1

 
 

ndv1 is the ratio between engine speed in min–1 and vehicle speed in km/h in gear 1

The downshift speed from gear 2 to gear 1 (v2→1) shall be calculated using the following equation:

Equation 2-7:

Formula

where:

ndv2 is the ratio between engine speed in min–1 and vehicle speed in km/h in gear 2

Since the cruise phases are defined by the phase indicator, slight speed increases could occur and it may be appropriate to apply an upshift. The upshift speeds (v1→2, v2→3 and vi→i+1) in km/h during cruise phases shall be calculated using the following equations:

Equation 2-7:

Formula

Equation 2-8:

Formula

Equation 2-9:

Formula, i = 3 to ng

4.5.5.2.1.3.   Step 2 — Gear choice for each cycle sample

In order to avoid different interpretations of acceleration, deceleration, cruise and stop phases, corresponding indicators are added to the vehicle speed pattern as integral parts of the cycles (see tables in Appendix 6).

The appropriate gear for each sample shall then be calculated according to the vehicle speed ranges resulting from the shift speed equations of point 4.5.5.2.1.1. and the phase indicators for the cycle parts appropriate for the test vehicle, as follows:

 
 

Gear choice for stop phases:

For the last five seconds of a stop phase, the gear lever shall be set to gear 1 and the clutch shall be disengaged. For the previous part of a stop phase, the gear lever shall be set to neutral or the clutch shall be disengaged.

 
 

Gear choice for acceleration phases:

 
 

gear 1, if v ≤ v1→2

 
 

gear 2, if v1→2 < v ≤ v2→3

 
 

gear 3, if v2→3 < v ≤ v3→4

 
 

gear 4, if v3→4 < v ≤ v4→5

 
 

gear 5, if v4→5 < v ≤ v5→6

 
 

gear 6, if v > v5→6

 
 

Gear choice for deceleration or cruise phases:

 
 

gear 1, if v < v2→1

 
 

gear 2, if v < v3→2

 
 

gear 3, if v3→2 ≤ v < v4→3

 
 

gear 4, if v4→3 ≤ v < v5→4

 
 

gear 5, if v5→4 ≤ v < v6→5

 
 

gear 6, if v ≥ v4→5

The clutch shall be disengaged, if:

 

(a)

the vehicle speed drops below 10 km/h, or

 

(b)

the engine speed drops below

Formula

;

 

(c)

there is a risk of engine stalling during cold-start phase.

4.5.5.2.3.   Step 3 — Corrections according to additional requirements

4.5.5.2.3.1.   The gear choice shall be modified according to the following requirements:

 

(a)

no gearshift at a transition from an acceleration phase to a deceleration phase. The gear that was used for the last second of the acceleration phase shall be kept for the following deceleration phase unless the speed drops below a downshift speed;

 

(b)

no upshifts or downshifts by more than one gear, except from gear 2 to neutral during decelerations down to stop;

 

(c)

upshifts or downshifts for up to four seconds are replaced by the gear before, if the gears before and after are identical, e.g. 2 3 3 3 2 shall be replaced by 2 2 2 2 2, and 4 3 3 3 3 4 shall be replaced by 4 4 4 4 4 4. In the cases of consecutive circumstances, the gear used longer takes over, e.g. 2 2 2 3 3 3 2 2 2 2 3 3 3 will be replaced by 2 2 2 2 2 2 2 2 2 2 3 3 3. If used for the same time, a series of succeeding gears shall take precedence over a series of preceding gears, e.g. 2 2 2 3 3 3 2 2 2 3 3 3 will be replaced by 2 2 2 2 2 2 2 2 2 3 3 3;

 

(d)

no downshift during an acceleration phase.

4.5.5.2.2.   Optional provisions

The gear choice may be modified according to the following provisions:

The use of gears lower than those determined by the requirements described in point 4.5.5.2.1. is permitted in any cycle phase. Manufacturers’ recommendations for gear use shall be followed if they do not result in gears higher than determined by the requirements of point 4.5.5.2.1.

4.5.5.2.3.   Optional provisions

Note 5: The calculation programme to be found on the UN website at the following URL may be used as an aid for the gear selection:

http://live.unece.org/trans/main/wp29/wp29wgs/wp29grpe/wmtc.html

Explanations of the approach and the gearshift strategy and a calculation example are given in Appendix 9.

4.5.6.   Dynamometer settings

A full description of the chassis dynamometer and instruments shall be provided in accordance with Appendix 6. Measurements shall be taken to the accuracies specified in point 4.5.7. The running resistance force for the chassis dynamometer settings can be derived either from on-road coast-down measurements or from a running resistance table, with reference to Appendix 5 or 7 for a vehicle equipped with one wheel on the powered axle and to Appendix 8 for a vehicle with two or more wheels on the powered axles.

4.5.6.1.   Chassis dynamometer setting derived from on-road coast-down measurements

To use this alternative, on-road coast-down measurements shall be carried out as specified in Appendix 7 for a vehicle equipped with one wheel on the powered axle and Appendix 8 for a vehicle equipped with two or more wheels on the powered axles.

4.5.6.1.1.   Requirements for the equipment

The instrumentation for the speed and time measurement shall have the accuracies specified in point 4.5.7.

4.5.6.1.2.   Inertia mass setting

4.5.6.1.2.1.   The equivalent inertia mass mi for the chassis dynamometer shall be the flywheel equivalent inertia mass, mfi, closest to the sum of the mass in running order of the vehicle and the mass of the driver (75 kg). Alternatively, the equivalent inertia mass mi can be derived from Appendix 5.

4.5.6.1.2.2.   If the reference mass mref cannot be equalised to the flywheel equivalent inertia mass mi, to make the target running resistance force F* equal to the running resistance force FE (which is to be set to the chassis dynamometer), the corrected coast-down time ΔTE may be adjusted in accordance with the total mass ratio of the target coast-down time ΔTroad in the following sequence:

Equation 2-10:

Formula

Equation 2-11:

Formula

Equation 2-12:

Formula

Equation 2-13:

Formula

with Formula

where:

mr1 may be measured or calculated, in kilograms, as appropriate. As an alternative, mr1 may be estimated as f percent of m.

4.5.6.2.   Running resistance force derived from a running resistance table

4.5.6.2.1.   The chassis dynamometer may be set by the use of the running resistance table instead of the running resistance force obtained by the coast-down method. In this table method, the chassis dynamometer shall be set by the mass in running order regardless of particular L-category vehicle characteristics.

Note 6: Care shall be taken when applying this method to L-category vehicles with extraordinary characteristics.

4.5.6.2.2.   The flywheel equivalent inertia mass mfi shall be the equivalent inertia mass mi specified in Appendix 5, 7 or 8 where applicable. The chassis dynamometer shall be set by the rolling resistance of the non-driven wheels (a) and the aero drag coefficient (b) specified in Appendix 5 or determined in accordance with the procedures set out in Appendix 7 or 8 respectively.

4.5.6.2.3   The running resistance force on the chassis dynamometer FE shall be determined using the following equation:

Equation 2-14:

Formula

4.5.6.2.4.   The target running resistance force F* shall be equal to the running resistance force obtained from the running resistance table FT, because the correction for the standard ambient conditions is not necessary.

4.5.7.   Measurement accuracies

Measurements shall be taken using equipment that fulfils the accuracy requirements in Table 1-7:

Table 1-7

Required accuracy of measurements

 

Measurement items

At measured value

Resolution

(a)

Running resistance force, F

  • 2 percent

(b)

Vehicle speed (v1, v2)

± 1 percent

0,2 km/h

(c)

Coast-down speed interval (

Formula

)

± 1 percent

0,1 km/h

(d)

Coast-down time (Δt)

± 0,5 percent

0,01 s

(e)

Total vehicle mass (mk + mrid)

± 0,5 percent

1,0 kg

(f)

Wind speed

± 10 percent

0,1 m/s

(g)

Wind direction

5 deg.

(h)

Temperatures

± 1 K

1 K

(i)

Barometric pressure

0,2 kPa

(j)

Distance

± 0,1 percent

1 m

(k)

Time

± 0,1 s

0,1 s

  • 5. 
    Test procedures

5.1.   Description of the type I test

The test vehicle shall be subjected, according to its category, to test type I requirements as specified in this point 5.

5.1.1.   Type I test (verifying the average emission of gaseous pollutants, CO2 emissions and fuel consumption in a characteristic driving cycle)

5.1.1.1.   The test shall be carried out by the method described in point 5.2. The gases shall be collected and analysed by the prescribed methods.

5.1.1.2.   Number of tests

5.1.1.2.1.   The number of tests shall be determined as shown in figure 1-5. Ri1 to Ri3 describe the final measurement results for the first (No 1) test to the third (No 3) test and the gaseous pollutant, carbon dioxide emission, fuel / energy consumption or electric range as laid down in Annex VII. ‘Lx’ represents the limit values L1 to L5 as defined in Parts A, B and C of Annex VI to Regulation (EU) No 168/2013.

5.1.1.2.2.   In each test, the masses of the carbon monoxide, hydrocarbons, nitrogen oxides, carbon dioxide and the fuel consumed during the test shall be determined. The mass of particulate matter shall be determined only for those (sub-)categories referred to in Parts A and B of Annex VI to Regulation (EU) No 168/2013 (see explanatory notes 8 and 9 at the end of Annex VIII to that Regulation).

Figure 1-5

Flowchart for the number of type I tests

Image

5.2.   Type I tests

5.2.1.   Overview

5.2.1.1.   The type I test consists of prescribed sequences of dynamometer preparation, fuelling, parking, and operating conditions.

5.2.1.2.   The test is designed to determine hydrocarbon, carbon monoxide, oxides of nitrogen, carbon dioxide, particulate matter mass emissions if applicable and fuel / energy consumption as well as electric range while simulating real-world operation. The test consists of engine start-ups and L-category vehicle operation on a chassis dynamometer, through a specified driving cycle. A proportional part of the diluted exhaust emissions is collected continuously for subsequent analysis, using a constant volume (variable dilution) sampler (CVS).

5.2.1.3.   Except in cases of component malfunction or failure, all emission-control systems installed on or incorporated in a tested L-category vehicle shall be functioning during all procedures.

5.2.1.4.   Background concentrations are measured for all emission constituents for which emissions measurements are taken. For exhaust testing, this requires sampling and analysis of the dilution air.

5.2.1.5.   Background particulate mass measurement

The particulate background level of the dilution air may be determined by passing filtered dilution air through the particulate filter. This shall be drawn from the same point as the particulate matter sample, if a particulate mass measurement is applicable according to Annex VI(A) to Regulation (EU) No 168/2013. One measurement may be performed prior to or after the test. Particulate mass measurements may be corrected by subtracting the background contribution from the dilution system. The permissible background contribution shall be ≤ 1 mg/km (or equivalent mass on the filter). If the background contribution exceeds this level, the default figure of 1 mg/km (or equivalent mass on the filter) shall be used. Where subtraction of the background contribution gives a negative result, the particulate mass result shall be considered to be zero.

5.2.2.   Dynamometer settings and verification

5.2.2.1.   Test vehicle preparation

5.2.2.1.1.   The manufacturer shall provide additional fittings and adapters, as required to accommodate a fuel drain at the lowest point possible in the tanks as installed on the vehicle, and to provide for exhaust sample collection.

5.2.2.1.2.   The tyre pressures shall be adjusted to the manufacturer’s specifications to the satisfaction of the technical service or so that the speed of the vehicle during the road test and the vehicle speed obtained on the chassis dynamometer are equal.

5.2.2.1.3.   The test vehicle shall be warmed up on the chassis dynamometer to the same condition as it was during the road test.

5.2.2.2.   Dynamometer preparation, if settings are derived from on-road coast-down measurements

Before the test, the chassis dynamometer shall be appropriately warmed up to the stabilised frictional force Ff. The load on the chassis dynamometer FE is, in view of its construction, composed of the total friction loss Ff, which is the sum of the chassis dynamometer rotating frictional resistance, the tyre rolling resistance, the frictional resistance of the rotating parts in the powertrain of the vehicle and the braking force of the power absorbing unit (pau) Fpau, as in the following equation:

Equation 2-15:

Formula

The target running resistance force F* derived from Appendix 5 or 7 for a vehicle equipped with one wheel on the powered axle and Appendix 8 for a vehicle with two or more wheels on the powered axles, shall be reproduced on the chassis dynamometer in accordance with the vehicle speed, i.e.:

Equation 2-16:

Formula

The total friction loss Ff on the chassis dynamometer shall be measured by the method in point 5.2.2.2.1. or 5.2.2.2.2.

5.2.2.2.1.   Motoring by chassis dynamometer

This method applies only to chassis dynamometers capable of driving an L-category vehicle. The test vehicle shall be driven steadily by the chassis dynamometer at the reference speed v0 with the drive train engaged and the clutch disengaged. The total friction loss Ff (v0) at the reference speed v0 is given by the chassis dynamometer force.

5.2.2.2.2.   Coast-down without absorption

The method for measuring the coast-down time is the coast-down method for the measurement of the total friction loss Ff. The vehicle coast-down shall be performed on the chassis dynamometer by the procedure described in Appendix 5 or 7 for a vehicle equipped with one wheel on the powered axle and Appendix 8 for a vehicle equipped with two or more wheels on the powered axles, with zero chassis dynamometer absorption. The coast-down time Δti corresponding to the reference speed v0 shall be measured. The measurement shall be carried out at least three times, and the mean coast-down time Formula shall be calculated using the following equation:

Equation 2-17:

Formula

5.2.2.2.3.   Total friction loss

The total friction loss Ff(v0) at the reference speed v0 is calculated using the following equation:

Equation 2-18:

Formula

5.2.2.2.4.   Calculation of power-absorption unit force

The force Fpau(v0) to be absorbed by the chassis dynamometer at the reference speed v0 is calculated by subtracting Ff(v0) from the target running resistance force F*(v0) as shown in the following equation:

Equation 2-19:

Formula

5.2.2.2.5.   Chassis dynamometer setting

Depending on its type, the chassis dynamometer shall be set by one of the methods described in points 5.2.2.2.5.1. to 5.2.2.2.5.4. The chosen setting shall be applied to the pollutant and CO2 emission measurements as well as for the energy efficiency measurements (fuel /energy consumption and electric range) laid down in Annex VII.

5.2.2.2.5.1.   Chassis dynamometer with polygonal function

In the case of a chassis dynamometer with polygonal function, in which the absorption characteristics are determined by load values at several speed points, at least three specified speeds, including the reference speed, shall be chosen as the setting points. At each setting point, the chassis dynamometer shall be set to the value Fpau (vj) obtained in point 5.2.2.2.4.

5.2.2.2.5.2.   Chassis dynamometer with coefficient control

In the case of a chassis dynamometer with coefficient control, in which the absorption characteristics are determined by given coefficients of a polynomial function, the value of Fpau (vj) at each specified speed shall be calculated by the procedure in point 5.2.2.2.

Assuming the load characteristics to be:

Equation 2-20:

Formula

where:

the coefficients a, b and c shall be determined by the polynomial regression method.

The chassis dynamometer shall be set to the coefficients a, b and c obtained by the polynomial regression method.

5.2.2.2.5.3.   Chassis dynamometer with F* polygonal digital setter

In the case of a chassis dynamometer with a polygonal digital setter, where a central processor unit is incorporated in the system, F*is input directly, and Δti, Ff and Fpau are automatically measured and calculated to set the chassis dynamometer to the target running resistance force:

Equation 2-21:

Formula

In this case, several points in succession are directly input digitally from the data set of F* j and vj, the coast-down is performed and the coast-down time Δtj is measured. After the coast-down test has been repeated several times, Fpau is automatically calculated and set at L-category vehicle speed intervals of 0,1 km/h, in the following sequence:

Equation 2-22:

Formula

Equation 2-23:

Formula

Equation 2-24:

Formula

5.2.2.2.5.4.   Chassis dynamometer with f* 0, f* 2 coefficient digital setter

In the case of a chassis dynamometer with a coefficient digital setter, where a central processor unit is incorporated in the system, the target running resistance force Formula is automatically set on the chassis dynamometer.

In this case, the coefficients f* 0 and f* 2 are directly input digitally; the coast-down is performed and the coast-down time Δti is measured. Fpau is automatically calculated and set at vehicle speed intervals of 0,06 km/h, in the following sequence:

Equation 2-25:

Formula

Equation 2-26:

Formula

Equation 2-27:

Formula

5.2.2.2.6.   Dynamometer settings verification

5.2.2.2.6.1.   Verification test

Immediately after the initial setting, the coast-down time ΔtE on the chassis dynamometer corresponding to the reference speed (v0) shall be measured by the procedure set out in Appendix 5 or 7 for a vehicle equipped with one wheel on the powered axle and in Appendix 8 for a vehicle with two or more wheels on the powered axles. The measurement shall be carried out at least three times, and the mean coast-down time ΔtE shall be calculated from the results. The set running resistance force at the reference speed, FE (v0) on the chassis dynamometer is calculated by the following equation:

Equation 2-28:

Formula

5.2.2.2.6.2.   Calculation of setting error

The setting error ε is calculated by the following equation:

Equation 2-29:

Formula

The chassis dynamometer shall be readjusted if the setting error does not satisfy the following criteria:

 
 

ε ≤ 2 percent for v0≥ 50 km/h

 
 

ε ≤ 3 percent for 30 km/h ≤ v0< 50 km/h

 
 

ε ≤ 10 percent for v0< 30 km/h

The procedure in points 5.2.2.2.6.1. to 5.2.2.2.6.2. shall be repeated until the setting error satisfies the criteria. The chassis dynamometer setting and the observed errors shall be recorded. Specimen record forms are provided in the template of the test report laid down in accordance with Article 32(1) of Regulation (EU) No 168/2013.

5.2.2.3.   Dynamometer preparation, if settings are derived from a running resistance table

5.2.2.3.1.   The specified vehicle speed for the chassis dynamometer

The running resistance on the chassis dynamometer shall be verified at the specified vehicle speed v. At least four specified speeds shall be verified. The range of specified vehicle speed points (the interval between the maximum and minimum points) shall extend either side of the reference speed or the reference speed range, if there is more than one reference speed, by at least Δv, as defined in Appendix 5 or 7 for a vehicle equipped with one wheel on the powered axle and in Appendix 8 for a vehicle with two or more wheels on the powered axles. The specified speed points, including the reference speed points, shall be at regular intervals of no more than 20 km/h apart.

5.2.2.3.2.   Verification of chassis dynamometer

5.2.2.3.2.1.   Immediately after the initial setting, the coast-down time on the chassis dynamometer corresponding to the specified speed shall be measured. The vehicle shall not be set up on the chassis dynamometer during the coast-down time measurement. The coast-down time measurement shall start when the chassis dynamometer speed exceeds the maximum speed of the test cycle.

5.2.2.3.2.2.   The measurement shall be carried out at least three times, and the mean coast-down time ΔtE shall be calculated from the results.

5.2.2.3.2.3.   The set running resistance force FE(vj) at the specified speed on the chassis dynamometer is calculated using the following equation:

Equation 2-30:

Formula

5.2.2.3.2.4.   The setting error ε at the specified speed is calculated using the following equation:

Equation 2-31:

Formula

5.2.2.3.2.5.   The chassis dynamometer shall be readjusted if the setting error does not satisfy the following criteria:

 
 

ε ≤ 2 percent for v ≥ 50 km/h

 
 

ε ≤ 3 percent for 30 km/h ≤ v < 50 km/h

 
 

ε ≤ 10 percent for v < 30 km/h

5.2.2.3.2.6.   The procedure described in points 5.2.2.3.2.1. to 5.2.2.3.2.5. shall be repeated until the setting error satisfies the criteria. The chassis dynamometer setting and the observed errors shall be recorded.

5.2.2.4.   The chassis dynamometer system shall comply with the calibration and verification methods laid down in Appendix 3.

5.2.3.   Calibration of analysers

5.2.3.1.   The quantity of gas at the indicated pressure compatible with the correct functioning of the equipment shall be injected into the analyser with the aid of the flow metre and the pressure-reducing valve mounted on each gas cylinder. The apparatus shall be adjusted to indicate as a stabilised value the value inserted on the standard gas cylinder. Starting from the setting obtained with the gas cylinder of greatest capacity, a curve shall be drawn of the deviations of the apparatus according to the content of the various standard cylinders used. The flame ionisation analyser shall be recalibrated periodically, at intervals of not more than one month, using air/propane or air/hexane mixtures with nominal hydrocarbon concentrations equal to 50 percent and 90 percent of full scale.

5.2.3.2.   Non-dispersive infrared absorption analysers shall be checked at the same intervals using nitrogen/ CO and nitrogen/ CO2 mixtures in nominal concentrations equal to 10, 40, 60, 85 and 90 percent of full scale.

5.2.3.3.   To calibrate the NOX chemiluminescence analyser, nitrogen/nitrogen oxide (NO) mixtures with nominal concentrations equal to 50 percent and 90 percent of full scale shall be used. The calibration of all three types of analysers shall be checked before each series of tests, using mixtures of the gases, which are measured in a concentration equal to 80 percent of full scale. A dilution device can be applied for diluting a 100 percent calibration gas to required concentration.

5.2.3.4.   Heated flame ionisation detector (FID) (analyser) hydrocarbon response check procedure

5.2.3.4.1.   Detector response optimisation

The FID shall be adjusted according to the manufacturer’s specifications. To optimise the response, propane in air shall be used on the most common operating range.

5.2.3.4.2.   Calibration of the hydrocarbon analyser

The analyser shall be calibrated using propane in air and purified synthetic air (see point 5.2.3.6.).

A calibration curve shall be established as described in point 5.2.3.1 to 5.2.3.3.

5.2.3.4.3.   Response factors of different hydrocarbons and recommended limits

The response factor (Rf) for a particular hydrocarbon species is the ratio of the FID C1 reading to the gas cylinder concentration, expressed as ppm C1.

The concentration of the test gas shall be at a level to give a response of approximately 80 percent of full-scale deflection for the operating range. The concentration shall be known to an accuracy of 2 percent in reference to a gravimetric standard expressed in volume. In addition, the gas cylinder shall be pre-conditioned for 24 hours at a temperature of between 293,2 K and 303,2 K (20 °C and 30 °C).

Response factors shall be determined when introducing an analyser into service and thereafter at major service intervals. The test gases to be used and the recommended response factors are:

 
 

Methane and purified air: 1,00 < Rf < 1,15

or 1,00 < Rf < 1,05 for NG/biomethane-fuelled vehicles

 
 

Propylene and purified air: 0,90 < Rf < 1,00

 
 

Toluene and purified air: 0,90 < Rf < 1,00

These are relative to a response factor (Rf) of 1,00 for propane and purified air.

5.2.3.5.   Calibration and verification procedures of the particulate mass emissions measurement equipment

5.2.3.5.1.   Flow meter calibration

The technical service shall check that a calibration certificate has been issued for the flow meter demonstrating compliance with a traceable standard within a 12-month period prior to the test, or since any repair or change which could influence calibration.

5.2.3.5.2.   Microbalance calibration

The technical service shall check that a calibration certificate has been issued for the microbalance demonstrating compliance with a traceable standard within a 12-month period prior to the test.

5.2.3.5.3.   Reference filter weighing

To determine the specific reference filter weights, at least two unused reference filters shall be weighed within eight hours of, but preferably at the same time as, the sample filter weighing. Reference filters shall be of the same size and material as the sample filter.

If the specific weight of any reference filter changes by more than ± 5 μg between sample filter weighings, the sample filter and reference filters shall be reconditioned in the weighing room and then reweighed.

This shall be based on a comparison of the specific weight of the reference filter and the rolling average of that filter’s specific weights.

The rolling average shall be calculated from the specific weights collected in the period since the reference filters were placed in the weighing room. The averaging period shall be between one day and 30 days.

Multiple reconditioning and reweighings of the sample and reference filters are permitted up to 80 hours after the measurement of gases from the emissions test.

If, within this period, more than half the reference filters meet the ± 5 μg criterion, the sample filter weighing can be considered valid.

If, at the end of this period, two reference filters are used and one filter fails to meet the ± 5 μg criterion, the sample filter weighing may be considered valid provided that the sum of the absolute differences between specific and rolling averages from the two reference filters is no more than 10 μg.

If fewer than half of the reference filters meet the ± 5 μg criterion, the sample filter shall be discarded and the emissions test repeated. All reference filters shall be discarded and replaced within 48 hours.

In all other cases, reference filters shall be replaced at least every 30 days and in such a manner that no sample filter is weighed without comparison with a reference filter that has been in the weighing room for at least one day.

If the weighing room stability criteria outlined in point 4.5.3.12.1.3.4. are not met but the reference filter weighings meet the criteria listed in point 5.2.3.5.3, the vehicle manufacturer has the option of accepting the sample filter weights or voiding the tests, fixing the weighing room control system and re-running the test.

Figure 1-6

Particulate sampling probe configuration

 

Image

Image

5.2.3.6.   Reference gases

5.2.3.6.1.   Pure gases

The following pure gases shall be available, if necessary, for calibration and operation:

 
 

Purified nitrogen: (purity: ≤ 1 ppm C1, ≤ 1 ppm CO, ≤ 400 ppm CO2, ≤ 0,1 ppm NO);

 
 

Purified synthetic air: (purity: ≤ 1 ppm C1, ≤ 1 ppm CO, ≤ 400 ppm CO2, ≤ 0,1 ppm NO); oxygen content between 18 and 21 percent by volume;

 
 

Purified oxygen: (purity > 99,5 percent vol. O2);

 
 

Purified hydrogen (and mixture containing helium): (purity ≤ 1 ppm C1, ≤400 ppm CO2);

 
 

Carbon monoxide: (minimum purity 99,5 percent);

 
 

Propane: (minimum purity 99,5 percent).

5.2.3.6.2.   Calibration and span gases

Mixtures of gases with the following chemical compositions shall be available:

 

(a)

C3H8 and purified synthetic air (see point 5.2.3.5.1.);

 

(b)

CO and purified nitrogen;

 

(c)

CO2 and purified nitrogen;

 

(d)

NO and purified nitrogen (the amount of NO2 contained in this calibration gas shall not exceed 5 percent of the NO content).

The true concentration of a calibration gas shall be within ± 2 percent of the stated figure.

5.2.3.6.   Calibration and verification of the dilution system

The dilution system shall be calibrated and verified and shall comply with the requirements of Appendix 4.

5.2.4.   Test vehicle preconditioning

5.2.4.1.   The test vehicle shall be moved to the test area and the following operations performed:

 

The fuel tanks shall be drained through the drains of the fuel tanks provided and charged with the test fuel requirement as specified in Appendix 2 to half the capacity of the tanks.

 

The test vehicle shall be placed, either by being driven or pushed, on a dynamometer and operated through the applicable test cycle as specified for the vehicle (sub-)category in Appendix 6. The vehicle need not be cold, and may be used to set dynamometer power.

5.2.4.2.   Practice runs over the prescribed driving schedule may be performed at test points, provided an emission sample is not taken, for the purpose of finding the minimum throttle action to maintain the proper speed-time relationship, or to permit sampling system adjustments.

5.2.4.3.   Within five minutes of completion of preconditioning, the test vehicle shall be removed from the dynamometer and may be driven or pushed to the soak area to be parked. The vehicle shall be stored for between six and 36 hours prior to the cold start type I test or until the engine oil temperature TO or the coolant temperature TC or the sparkplug seat/gasket temperature TP (only for air-cooled engine) equals the air temperature of the soak area within 2 K.

5.2.4.4.   For the purpose of measuring particulates, between six and 36 hours before testing, the applicable test cycle from Part A of Annex VI to Regulation (EU) No 168/2013 shall be conducted on the basis of Annex IV to that Regulation. The technical details of the applicable test cycle are laid down in Appendix 6 and the applicable test cycle shall also be used for vehicle pre-conditioning. Three consecutive cycles shall be driven. The dynamometer setting shall be indicated as in point 4.5.6.

5.2.4.5.   At the request of the manufacturer, vehicles fitted with indirect injection positive-ignition engines may be preconditioned with one Part One, one Part Two and two Part Three driving cycles, if applicable, from the WMTC.

In a test facility where a test on a low particulate emitting vehicle could be contaminated by residue from a previous test on a high particulate emitting vehicle, it is recommended that, in order to pre-condition the sampling equipment, the low particulate emitting vehicle undergo a 20 minute 120 km/h steady state drive cycle or at 70% of the maximum design speed for vehicles not capable of attaining 120 km/h followed by three consecutive Part Two or Part Three WMTC cycles, if feasible.

After this preconditioning, and before testing, vehicles shall be kept in a room in which the temperature remains relatively constant between 293,2 K and 303,2 K (20 °C and 30 °C). This conditioning shall be carried out for at least six hours and continue until the engine oil temperature and coolant, if any, are within ±2 K of the temperature of the room.

If the manufacturer so requests, the test shall be carried out not later than 30 hours after the vehicle has been run at its normal temperature.

5.2.4.6.   Vehicles equipped with a positive-ignition engine, fuelled with LPG, NG/biomethane, H2NG, hydrogen or so equipped that they can be fuelled with either petrol, LPG, NG/biomethane, H2NG or hydrogen between the tests on the first gaseous reference fuel and the second gaseous reference fuel, shall be preconditioned before the test on the second reference fuel. This preconditioning on the second reference fuel shall involve a preconditioning cycle consisting of one Part One, Part Two and two Part Three WMTC cycles, as described in Appendix 6. At the manufacturer’s request and with the agreement of the technical service, this preconditioning may be extended. The dynamometer setting shall be as indicated in point 4.5.6 of this Annex.

5.2.5.   Emissions tests

5.2.5.1.   Engine starting and restarting

5.2.5.1.1.   The engine shall be started according to the manufacturer’s recommended starting procedures. The test cycle run shall begin when the engine starts.

5.2.5.1.2.   Test vehicles equipped with automatic chokes shall be operated according to the instructions in the manufacturer’s operating instructions or owner’s manual covering choke-setting and ‘kick-down’ from cold fast idle. In the case of the WMTC set out in Appendix 6, the transmission shall be put in gear 15 seconds after the engine is started. If necessary, braking may be employed to keep the drive wheels from turning. In the case of the ECE R40 or 47 cycles, the transmission shall be put in gear five seconds before the first acceleration.

5.2.5.1.3.   Test vehicles equipped with manual chokes shall be operated according to the manufacturer’s operating instructions or owner’s manual. Where times are provided in the instructions, the point for operation may be specified, within 15 seconds of the recommended time.

5.2.5.1.4.   The operator may use the choke, throttle, etc. where necessary to keep the engine running.

5.2.5.1.5.   If the manufacturer’s operating instructions or owner’s manual do not specify a warm engine starting procedure, the engine (automatic and manual choke engines) shall be started by opening the throttle about half way and cranking the engine until it starts.

5.2.5.1.6.   If, during the cold start, the test vehicle does not start after ten seconds of cranking or ten cycles of the manual starting mechanism, cranking shall cease and the reason for failure to start determined. The revolution counter on the constant volume sampler shall be turned off and the sample solenoid valves placed in the ‘standby’ position during this diagnostic period. In addition, either the CVS blower shall be turned off or the exhaust tube disconnected from the tailpipe during the diagnostic period.

5.2.5.1.7.   If failure to start is an operational error, the test vehicle shall be rescheduled for testing from a cold start. If failure to start is caused by vehicle malfunction, corrective action (following the unscheduled maintenance provisions) lasting less than 30 minutes may be taken and the test continued. The sampling system shall be reactivated at the same time cranking is started. The driving schedule timing sequence shall begin when the engine starts. If failure to start is caused by vehicle malfunction and the vehicle cannot be started, the test shall be voided, the vehicle removed from the dynamometer, corrective action taken (following the unscheduled maintenance provisions) and the vehicle rescheduled for test. The reason for the malfunction (if determined) and the corrective action taken shall be reported.

5.2.5.1.8.   If the test vehicle does not start during the hot start after ten seconds of cranking or ten cycles of the manual starting mechanism, cranking shall cease, the test shall be voided, the vehicle removed from the dynamometer, corrective action taken and the vehicle rescheduled for test. The reason for the malfunction (if determined) and the corrective action taken shall be reported.

5.2.5.1.9.   If the engine ‘false starts’, the operator shall repeat the recommended starting procedure (such as resetting the choke, etc.)

5.2.5.2.   Stalling

5.2.5.2.1.   If the engine stalls during an idle period, it shall be restarted immediately and the test continued. If it cannot be started soon enough to allow the vehicle to follow the next acceleration as prescribed, the driving schedule indicator shall be stopped. When the vehicle restarts, the driving schedule indicator shall be reactivated.

5.2.5.2.2.   If the engine stalls during some operating mode other than idle, the driving schedule indicator shall be stopped, the test vehicle restarted and accelerated to the speed required at that point in the driving schedule, and the test continued. During acceleration to this point, gearshifts shall be performed in accordance with point 4.5.5.

5.2.5.2.3.   If the test vehicle will not restart within one minute, the test shall be voided, the vehicle removed from the dynamometer, corrective action taken and the vehicle rescheduled for test. The reason for the malfunction (if determined) and the corrective action taken shall be reported.

5.2.6.   Drive instructions

5.2.6.1.   The test vehicle shall be driven with minimum throttle movement to maintain the desired speed. No simultaneous use of brake and throttle shall be permitted.

5.2.6.2.   If the test vehicle cannot accelerate at the specified rate, it shall be operated with the throttle fully opened until the roller speed reaches the value prescribed for that time in the driving schedule.

5.2.7.   Dynamometer test runs

5.2.7.1.   The complete dynamometer test consists of consecutive parts as described in point 4.5.4.

5.2.7.2.   The following steps shall be taken for each test:

 

(a)

place drive wheel of vehicle on dynamometer without starting engine;

 

(b)

activate vehicle cooling fan;

 

(c)

for all test vehicles, with the sample selector valves in the ‘standby’ position, connect evacuated sample collection bags to the dilute exhaust and dilution air sample collection systems;

 

(d)

start the CVS (if not already on), the sample pumps and the temperature recorder. (The heat exchanger of the constant volume sampler, if used, and sample lines shall be preheated to their respective operating temperatures before the test begins);

 

(e)

adjust the sample flow rates to the desired flow rate and set the gas flow measuring devices to zero;

 

For gaseous bag (except hydrocarbon) samples, the minimum flow rate is 0.08 litre/second;

 

For hydrocarbon samples, the minimum flame ionisation detection (FID) (or heated flame ionisation detection (HFID) in the case of methanol-fuelled vehicles) flow rate is 0.031 litre/second;

 

(f)

attach the flexible exhaust tube to the vehicle tailpipes;

 

(g)

start the gas flow measuring device, position the sample selector valves to direct the sample flow into the ‘transient’ exhaust sample bag, the ‘transient’ dilution air sample bag, turn the key on and start cranking the engine;

 

(h)

put the transmission in gear;

 

(i)

begin the initial vehicle acceleration of the driving schedule;

 

(j)

operate the vehicle according to the driving cycles specified in point 4.5.4.;

 

(k)

at the end of part 1 or part 1 in cold condition, simultaneously switch the sample flows from the first bags and samples to the second bags and samples, switch off gas flow measuring device No 1 and start gas flow measuring device No 2;

 

(l)

in case of vehicles capable of running Part 3 of the WMTC, at the end of Part 2 simultaneously switch the sample flows from the second bags and samples to the third bags and samples, switch off gas flow measuring device No 2 and, start gas flow measuring device No 3;

 

(m)

before starting a new part, record the measured roll or shaft revolutions and reset the counter or switch to a second counter. As soon as possible, transfer the exhaust and dilution air samples to the analytical system and process the samples according to point 6., obtaining a stabilised reading of the exhaust bag sample on all analysers within 20 minutes of the end of the sample collection phase of the test;

 

(n)

turn the engine off two seconds after the end of the last part of the test;

 

(o)

immediately after the end of the sample period, turn off the cooling fan;

 

(p)

turn off the constant volume sampler (CVS) or critical-flow venturi (CFV) or disconnect the exhaust tube from the tailpipes of the vehicle;

 

(q)

disconnect the exhaust tube from the vehicle tailpipes and remove the vehicle from the dynamometer;

 

(r)

for comparison and analysis reasons, second-by-second emissions (diluted gas) data shall be monitored as well as the bag results.

  • 6. 
    Analysis of results

6.1.   Type I tests

6.1.1.   Exhaust emission and fuel consumption analysis

6.1.1.1.   Analysis of the samples contained in the bags

The analysis shall begin as soon as possible, and in any event not later than 20 minutes after the end of the tests, in order to determine:

 

the concentrations of hydrocarbons, carbon monoxide, nitrogen oxides and carbon dioxide in the sample of dilution air contained in bag(s) B;

 

the concentrations of hydrocarbons, carbon monoxide, nitrogen oxides and carbon dioxide in the sample of diluted exhaust gases contained in bag(s) A.

6.1.1.2.   Calibration of analysers and concentration results

The analysis of the results has to be carried out in the following steps:

 

(a)

prior to each sample analysis, the analyser range to be used for each pollutant shall be set to zero with the appropriate zero gas;

 

(b)

the analysers are set to the calibration curves by means of span gases of nominal concentrations of 70 to 100 percent of the range;

 

(c)

the analysers’ zeros are rechecked. If the reading differs by more than 2 percent of range from that set in (b), the procedure is repeated;

 

(d)

the samples are analysed;

 

(e)

after the analysis, zero and span points are rechecked using the same gases. If the readings are within 2 percent of those in point (c), the analysis is considered acceptable;

 

(f)

at all points in this section the flow-rates and pressures of the various gases shall be the same as those used during calibration of the analysers;

 

(g)

the figure adopted for the concentration of each pollutant measured in the gases is that read off after stabilisation on the measuring device.

6.1.1.3.   Measuring the distance covered

The distance (S) actually covered for a test part shall be calculated by multiplying the number of revolutions read from the cumulative counter (see point 5.2.7.) by the circumference of the roller. This distance shall be expressed in km.

6.1.1.4.   Determination of the quantity of gas emitted

The reported test results shall be computed for each test and each cycle part by use of the following formulae. The results of all emission tests shall be rounded, using the ‘rounding-off method’ in ASTM E 29-67, to the number of decimal places indicated by expressing the applicable standard to three significant figures.

6.1.1.4.1.   Total volume of diluted gas

The total volume of diluted gas, expressed in m3/cycle part, adjusted to the reference conditions of 273,2 K (0 °C ) and 101,3 kPa, is calculated by

Equation 2-32:

Formula

where:

 
 

V0 is the volume of gas displaced by pump P during one revolution, expressed in m3/revolution. This volume is a function of the differences between the intake and output sections of the pump;

 
 

N is the number of revolutions made by pump P during each part of the test;

 
 

Pa is the ambient pressure in kPa;

 
 

Pi is the average under-pressure during the test part in the intake section of pump P, expressed in kPa;

 
 

TP is the temperature (expressed in K) of the diluted gases during the test part, measured in the intake section of pump P.

6.1.1.4.2.   Hydrocarbons (HC)

The mass of unburned hydrocarbons emitted by the exhaust of the vehicle during the test shall be calculated using the following formula:

Equation 2-33:

Formula

where:

 
 

HCm is the mass of hydrocarbons emitted during the test part, in mg/km;

 
 

S is the distance defined in point 6.1.1.3.;

 
 

V is the total volume, defined in point 6.1.1.4.1.;

 
 

dHC is the density of the hydrocarbons at reference temperature and pressure (273,2 K and 101,3 kPa);

 

dHC

  • 631·103 mg/m3 for petrol (E5) (C1H1,89O0,016);
  • 932·103 mg/m3 for ethanol (E85) (C1H2,74O0,385);
  • 622·103 mg/m3 for diesel (B5)(C1Hl,86O0,005);
  • 649·103 mg/m3 for LPG (C1H2,525);
  • 714·103 mg/m3 for NG/biogas (C1H4);
  • mg/m3 for H2NG (with Formula in (volume %)).
 
 

HCc is the concentration of diluted gases, expressed in parts per million (ppm) of carbon equivalent (e.g. the concentration in propane multiplied by three), corrected to take account of the dilution air by the following equation:

Equation 2-34:

Formula

where:

 
 

HCe is the concentration of hydrocarbons expressed in parts per million (ppm) of carbon equivalent, in the sample of diluted gases collected in bag(s) A;

 
 

HCd is the concentration of hydrocarbons expressed in parts per million (ppm) of carbon equivalent, in the sample of dilution air collected in bag(s) B;

 
 

DF is the coefficient defined in point 6.1.1.4.7.

The non-methane hydrocarbon (NMHC) concentration is calculated as follows:

Equation 2-35:

Formula

where:

 

CNMHC

=

corrected concentration of NMHC in the diluted exhaust gas, expressed in ppm carbon equivalent;

CTHC

=

concentration of total hydrocarbons (THC) in the diluted exhaust gas, expressed in ppm carbon equivalent and corrected by the amount of THC contained in the dilution air;

CCH4

=

concentration of methane (CH4) in the diluted exhaust gas, expressed in ppm carbon equivalent and corrected by the amount of CH4 contained in the dilution air;

Rf CH4 is the FID response factor to methane as defined in point 5.2.3.4.1.

6.1.1.4.3.   Carbon monoxide (CO)

The mass of carbon monoxide emitted by the exhaust of the vehicle during the test shall be calculated using the following formula:

Equation 2-36:

Formula

where:

 
 

COm is the mass of carbon monoxide emitted during the test part, in mg/km;

 
 

S is the distance defined in point 6.1.1.3.;

 
 

V is the total volume defined in point 6.1.1.4.1.;

 
 

dCO is the density of the carbon monoxide, Formula mg/m3 at reference temperature and pressure (273,2 K and 101,3 kPa);

 
 

COc is the concentration of diluted gases, expressed in parts per million (ppm) of carbon monoxide, corrected to take account of the dilution air by the following equation:

Equation 2-37:

Formula

where:

 
 

COe is the concentration of carbon monoxide expressed in parts per million (ppm), in the sample of diluted gases collected in bag(s) A;

 
 

COd is the concentration of carbon monoxide expressed in parts per million (ppm), in the sample of dilution air collected in bag(s) B;

 
 

DF is the coefficient defined in point 6.1.1.4.7.

6.1.1.4.4.   Nitrogen oxides (NOx)

The mass of nitrogen oxides emitted by the exhaust of the vehicle during the test shall be calculated using the following formula:

Equation 2-38:

Formula

where:

 
 

NOxm is the mass of nitrogen oxides emitted during the test part, in mg/km;

 
 

S is the distance defined in point 6.1.1.3.;

 
 

V is the total volume defined in point 6.1.1.4.1.;

 
 

dNO2 is the density of the nitrogen oxides in the exhaust gases, assuming that they will be in the form of nitric oxide, Formula mg/m3 at reference temperature and pressure (273,2 K and 101,3 kPa);

 
 

NOxc is the concentration of diluted gases, expressed in parts per million (ppm), corrected to take account of the dilution air by the following equation:

Equation 2-39:

Formula

where:

 
 

NOxe is the concentration of nitrogen oxides expressed in parts per million (ppm) of nitrogen oxides, in the sample of diluted gases collected in bag(s) A;

 
 

NOxd is the concentration of nitrogen oxides expressed in parts per million (ppm) of nitrogen oxides, in the sample of dilution air collected in bag(s) B;

 
 

DF is the coefficient defined in point 6.1.1.4.7.;

 
 

Kh is the humidity correction factor, calculated using the following formula:

Equation 2-40:

Formula

where:

H is the absolute humidity in g of water per kg of dry air:

Equation 2-41:

Formula

where:

 
 

U is the humidity as a percentage;

 
 

Pd is the saturated pressure of water at the test temperature, in kPa;

 
 

Pa is the atmospheric pressure in kPa.

6.1.1.4.5.   Particulate matter mass

Particulate emission Mp (mg/km) is calculated by means of the following equation:

Equation 2-42:

Formula

where exhaust gases are vented outside the tunnel;

Equation 2-43:

Formula

where exhaust gases are returned to the tunnel;

where:

 

Vmix

=

volume V of diluted exhaust gases under standard conditions;

Vep

=

volume of exhaust gas flowing through particulate filter under standard conditions;

Pe

=

particulate mass collected by filter(s);

S

=

is the distance defined in point 6.1.1.3.;

Mp

=

particulate emission in mg/km.

Where correction for the particulate background level from the dilution system has been used, this shall be determined in accordance with point 5.2.1.5. In this case, the particulate mass (mg/km) shall be calculated as follows:

Equation 2-44:

Formula

where exhaust gases are vented outside the tunnel;

Equation 2-45:

Formula

where exhaust gases are returned to the tunnel;

where:

 

Vap

=

volume of tunnel air flowing through the background particulate filter under standard conditions;

Pa

=

particulate mass collected by background filter;

DF

=

dilution factor as determined in point 6.1.1.4.7.

Where application of a background correction results in a negative particulate mass (in mg/km), the result shall be considered to be zero mg/km particulate mass.

6.1.1.4.6.   Carbon dioxide (CO2)

The mass of carbon dioxide emitted by the exhaust of the vehicle during the test shall be calculated using the following formula:

Equation 2-46:

Formula

where:

 
 

CO2m is the mass of carbon dioxide emitted during the test part, in g/km;

 
 

S is the distance defined in point 6.1.1.3.;

 
 

V is the total volume defined in point 6.1.1.4.1.;

 
 

dCO2 is the density of the carbon monoxide, Formula g/m3 at reference temperature and pressure (273,2 K and 101,3 kPa);

 
 

CO2c is the concentration of diluted gases, expressed as a percentage of carbon dioxide equivalent, corrected to take account of the dilution air by the following equation:

Equation 2-47:

Formula

where:

 
 

CO2e is the concentration of carbon dioxide expressed as a percentage of the sample of diluted gases collected in bag(s) A;

 
 

CO2d is the concentration of carbon dioxide expressed as a percentage of the sample of dilution air collected in bag(s) B;

 
 

DF is the coefficient defined in point 6.1.1.4.7.

6.1.1.4.7.   Dilution factor (DF)

The dilution factor is calculated as follows:

 
 

For each reference fuel, except hydrogen:

Equation 2-48:

Formula

 
 

For a fuel of composition CxHyOz, the general formula is:

Equation 2-49:

Formula

 
 

For H2NG, the formula is:

Equation 2-50:

Formula

 
 

For hydrogen, the dilution factor is calculated as follows:

Equation 2-51:

Formula

 
 

For the reference fuels contained in Appendix x, the values of ‘X’ are as follows:

Table 1-8

Factor ‘X’ in formulae to calculate DF

 

Fuel

X

Petrol (E5)

13,4

Diesel (B5)

13,5

LPG

11,9

NG/biomethane

9,5

Ethanol (E85)

12,5

Hydrogen

35,03

In these equations:

 

CCO2

=

concentration of CO2 in the diluted exhaust gas contained in the sampling bag, expressed in percent by volume,

CHC

=

concentration of HC in the diluted exhaust gas contained in the sampling bag, expressed in ppm carbon equivalent,

CCO

=

concentration of CO in the diluted exhaust gas contained in the sampling bag, expressed in ppm,

CH2O

=

concentration of H2O in the diluted exhaust gas contained in the sampling bag, expressed in percent by volume,

CH2O-DA

=

concentration of H2O in the air used for dilution, expressed in percent by volume,

CH2

=

concentration of hydrogen in the diluted exhaust gas contained in the sampling bag, expressed in ppm,

A

=

quantity of NG/biomethane in the H2NG mixture, expressed in percent by volume.

6.1.1.5.   Weighting of type I test results

6.1.1.5.1.   With repeated measurements (see point 5.1.1.2.), the pollutant (mg/km), and CO2 emission results obtained by the calculation method described in point 6.1.1. and fuel / energy consumption and electric range determined according to Annex VII are averaged for each cycle part.

6.1.1.5.1.1   Weighting of results from UNECE regulation No 40 and regulation No 47 test cycles

The (average) result of the cold phase of UNECE regulation No 40 and of regulation No 47 test cycle is called R1; the (average) result of the warm phase of UNECE regulation No 40 and of regulation No 47 test cycle is called R2. Using these pollutant (mg/km) and CO2 (g/km) emission results, the final result R, depending on the vehicle class as defined in point 6.3., shall be calculated using the following equations:

Equation 2-52:

Formula

where:

 

w1

=

weighting factor cold phase

w2

=

weighting factor warm phase

6.1.1.5.1.2   Weighting of WMTC results

The (average) result of Part 1 or Part 1 reduced vehicle speed is called R1, the (average) result of Part 2 or Part 2 reduced vehicle speed is called R2 and the (average) result of Part 3 or part 3 reduced vehicle speed is called R3. Using these emission (mg/km) and fuel consumption (litres/100 km) results, the final result R, depending on the vehicle category as defined in point 6.1.1.6.2., shall be calculated using the following equations:

Equation 2-53:

Formula

where:

 

w1

=

weighting factor cold phase

w2

=

weighting factor warm phase

Equation 2-54:

Formula

where:

 

wn

=

weighting factor phase n (n=1, 2 or 3)

6.1.1.6.2.   For each pollutant emission constituent, the carbon dioxide emission weightings shown in Tables 1-9 (Euro 4) and 1-10 (Euro 5) shall be used.

Table 1-9

Type I test cycles (also applicable for test types VII and VIII) for Euro 4 compliant L-category vehicles, applicable weighting equations and weighting factors

 

Vehicle category

Vehicle category name

Test cycle

Equation number

Weighting factors

L1e-A

Powered cycle

ECE R47

2-52

w1 = 0,30

w2 = 0,70

L1e-B

Two-wheel moped

L2e

Three-wheel moped

L6e-A

Light on-road quad

L6e-B

Light quadri-mobile

L3e

L4e

Two-wheel motorcycle with and without side-car

vmax < 130 km/h

WMTC, stage 2

2-53

w1 = 0,30

w2 = 0,70

L5e-A

Tricycle

vmax < 130 km/h

L7e-A

Heavy on-road quad

vmax < 130 km/h

L3e

L4e

Two-wheel motorcycle with and without side-car

vmax ≥ 130 km/h

WMTC, stage 2

2-54

w1 = 0,25

w2 = 0,50

w3 = 0,25

L5e-A

Tricycle

vmax ≥ 130 km/h

L7e-A

Heavy on-road quad

vmax ≥ 130 km/h

L5e-B

Commercial tricycle

ECE R40

2-52

w1 = 0,30

w2 = 0,70

L7e-B

All-terrain vehicles

L7e-C

Heavy quadri-mobile

Table 1-10

Type I test cycles (also applicable for test types VII and VIII) for Euro 5 compliant L-category vehicles, applicable weighting equations and weighting factors

 

Vehicle category

Vehicle category name

Test cycle

Equation #

Weighting factors

L1e-A

Powered cycle

WMTC stage 3

2-53

w1 = 0,50

w2 = 0,50

L1e-B

Two-wheel moped

L2e

Three-wheel moped

L6e-A

Light on-road quad

L6e-B

Light quadri-mobile

L3e

L4e

Two-wheel motorcycle with and without side-car

vmax < 130 km/h

2-53

w1 = 0,50

w2 = 0,50

L5e-A

Tricycle

vmax < 130 km/h

L7e-A

Heavy on-road quad

vmax < 130 km/h

L3e

L4e

Two-wheel motorcycle with and without side-car

vmax ≥ 130 km/h

2-54

w1 = 0,25

w2 = 0,50

w3 = 0,25

L5e-A

Tricycle

vmax ≥ 130 km/h

L7e-A

Heavy on-road quad

vmax ≥ 130 km/h

L5e-B

Commercial tricycle

2-53

w1 = 0,30

w2 = 0,70

L7e-B

All-terrain vehicles

L7e-C

Heavy quadri-mobile

  • 7. 
    Records required

The following information shall be recorded with respect to each test:

 

(a)

test number;

 

(b)

vehicle, system or component identification;

 

(c)

date and time of day for each part of the test schedule;

 

(d)

instrument operator;

 

(e)

driver or operator;

 

(f)

test vehicle: make, vehicle identification number, model year, drivetrain / transmission type, odometer reading at initiation of preconditioning, engine displacement, engine family, emission-control system, recommended engine speed at idle, nominal fuel tank capacity, inertial loading, reference mass recorded at 0 kilometre, and drive-wheel tyre pressure;

 

(g)

dynamometer serial number: as an alternative to recording the dynamometer serial number, a reference to a vehicle test cell number may be used, with the advance approval of the Administration, provided the test cell records show the relevant instrument information;

 

(h)

all relevant instrument information, such as tuning, gain, serial number, detector number, range. As an alternative, a reference to a vehicle test cell number may be used, with the advance approval of the Administration, provided test cell calibration records show the relevant instrument information;

 

(i)

recorder charts: identify zero point, span check, exhaust gas, and dilution air sample traces;

 

(j)

test cell barometric pressure, ambient temperature and humidity;

Note 7: A central laboratory barometer may be used; provided that individual test cell barometric pressures are shown to be within ± 0,1 percent of the barometric pressure at the central barometer location.

 

(k)

pressure of the mixture of exhaust and dilution air entering the CVS metering device, the pressure increase across the device, and the temperature at the inlet. The temperature shall be recorded continuously or digitally to determine temperature variations;

 

(l)

the number of revolutions of the positive displacement pump accumulated during each test phase while exhaust samples are being collected. The number of standard cubic meters metered by a critical-flow venturi (CFV) during each test phase would be the equivalent record for a CFV-CVS;

 

(m)

the humidity of the dilution air.

Note 8: If conditioning columns are not used, this measurement can be deleted. If the conditioning columns are used and the dilution air is taken from the test cell, the ambient humidity can be used for this measurement;

 

(n)

the driving distance for each part of the test, calculated from the measured roll or shaft revolutions;

 

(o)

the actual roller speed pattern for the test;

 

(p)

the gear use schedule for the test;

 

(q)

the emissions results of the type I test for each part of the test and the total weighted test results;

 

(r)

the second-by-second emission values of the type I tests, if deemed necessary;

 

(s)

the emissions results of the type II test (see Annex III).

Appendix 1

Symbols used in Annex II

Table Ap 1-1

Symbols used in Annex II

 

Symbol

Definition

Unit

a

Coefficient of polygonal function

aT

Rolling resistance force of front wheel

N

b

Coefficient of polygonal function

bT

Coefficient of aerodynamic function

Formula

c

Coefficient of polygonal function

CCO

Concentration of carbon monoxide

percent vol.

CCOcorr

Corrected concentration of carbon monoxide

percent vol.

CO2c

Carbon dioxide concentration of diluted gas, corrected to take account of diluent air

percent

CO2d

Carbon dioxide concentration in the sample of diluent air collected in bag B

percent

CO2e

Carbon dioxide concentration in the sample of diluent air collected in bag A

percent

CO2m

Mass of carbon dioxide emitted during the test part

g/km

COc

Carbon monoxide concentration of diluted gas, corrected to take account of diluent air

ppm

COd

Carbon monoxide concentration in the sample of diluent air, collected in bag B

ppm

COe

Carbon monoxide concentration in the sample of diluent air, collected in bag A

ppm

COm

Mass of carbon monoxide emitted during the test part

mg/km

d0

Standard ambient relative air density

dCO

Density of carbon monoxide

mg/m3

dCO2

Density of carbon dioxide

mg/m3

DF

Dilution factor

dHC

Density of hydrocarbon

mg/m3

S / d

Distance driven in a cycle part

km

dNOX

Density of nitrogen oxide

mg/m3

dT

Relative air density under test condition

Δt

Coast-down time

s

Δtai

Coast-down time measured in the first road test

s

Δtbi

Coast-down time measured in the second road test

s

ΔTE

Coast-down time corrected for the inertia mass

s

ΔtE

Mean coast-down time on the chassis dynamometer at the reference speed

s

ΔTi

Average coast-down time at specified speed

s

Δti

Coast-down time at corresponding speed

s

ΔTj

Average coast-down time at specified speed

s

ΔTroad

Target coast-down time

s

Formula

Mean coast-down time on the chassis dynamometer without absorption

s

Δv

Coast-down speed interval (

Formula

)

km/h

ε

Chassis dynamometer setting error

percent

F

Running resistance force

N

F*

Target running resistance force

N

F*(v0)

Target running resistance force at reference speed on chassis dynamometer

N

F*(vi)

Target running resistance force at specified speed on chassis dynamometer

N

f*0

Corrected rolling resistance in the standard ambient condition

N

f*2

Corrected coefficient of aerodynamic drag in the standard ambient condition

Formula

F*j

Target running resistance force at specified speed

N

f0

Rolling resistance

N

f2

Coefficient of aerodynamic drag

Formula

FE

Set running resistance force on the chassis dynamometer

N

FE(v0)

Set running resistance force at the reference speed on the chassis dynamometer

N

FE(v2)

Set running resistance force at the specified speed on the chassis dynamometer

N

Ff

Total friction loss

N

Ff(v0)

Total friction loss at the reference speed

N

Fj

Running resistance force

N

Fj(v0)

Running resistance force at the reference speed

N

Fpau

Braking force of the power absorbing unit

N

Fpau(v0)

Braking force of the power absorbing unit at the reference speed

N

Fpau(vj)

Braking force of the power absorbing unit at the specified speed

N

FT

Running resistance force obtained from the running resistance table

N

H

Absolute humidity

mg/km

HCc

Concentration of diluted gases expressed in the carbon equivalent, corrected to take account of diluent air

ppm

HCd

Concentration of hydrocarbons expressed in the carbon equivalent, in the sample of diluent air collected in bag B

ppm

HCe

Concentration of hydrocarbons expressed in the carbon equivalent, in the sample of diluent air collected in bag A

ppm

HCm

Mass of hydrocarbon emitted during the test part

mg/km

K0

Temperature correction factor for rolling resistance

Kh

Humidity correction factor

L

Limit values of gaseous emission

mg/km

m

Test L-category vehicle mass

kg

ma

Actual mass of the test L-category vehicle

kg

mfi

Flywheel equivalent inertia mass

kg

mi

Equivalent inertia mass

kg

mk

Kerb mass (L-category vehicle)

kg

mr

Equivalent inertia mass of all the wheels

kg

mri

Equivalent inertia mass of all the rear wheel and L-category vehicle parts rotating with wheel

kg

mref

Mass in running order of the L-category vehicle plus mass of driver (75 kg)

kg

mrf

Rotating mass of the front wheel

kg

mrid

Rider mass

kg

n

Engine speed

min–1

n

Number of data regarding the emission or the test

N

Number of revolution made by pump P

ng

Number of forward gears

nidle

Idling speed

min–1

n_max_acc (1)

Upshift speed from gear 1 to gear 2 during acceleration phases

min–1

n_max_acc (i)

Up shift speed from gear i to gear i+1 during acceleration phases, i > 1

min–1

n_min_acc (i)

Minimum engine speed for cruising or deceleration in gear 1

min–1

NOxc

Nitrogen oxide concentration of diluted gases, corrected to take account of diluent air

ppm

NOxd

Nitrogen oxide concentration in the sample of diluent air collected in bag B

ppm

NOxe

Nitrogen oxide concentration in the sample of diluent air collected in bag A

ppm

NOxm

Mass of nitrogen oxides emitted during the test part

mg/km

P0

Standard ambient pressure

kPa

Pa

Ambient/atmospheric pressure

kPa

Pd

Saturated pressure of water at the test temperature

kPa

Pi

Average under-pressure during the test part in the section of pump P

kPa

Pn

Rated engine power

kW

PT

Mean ambient pressure during the test

kPa

ρ0

Standard relative ambient air volumetric mass

kg/m3

r(i)

Gear ratio in gear i

R

Final test result of pollutant emissions, carbon dioxide emission or fuel consumption

mg/km,

g/km, 1/100 km

R1

Test results of pollutant emissions, carbon dioxide emission or fuel consumption for cycle part 1 with cold start

mg/km,

g/km, 1/100 km

R2

Test results of pollutant emissions, carbon dioxide emission or fuel consumption for cycle part 2 with warm condition

mg/km,

g/km, 1/100 km

R3

Test results of pollutant emissions, carbon dioxide emission or fuel consumption for cycle part 1 with warm condition

mg/km,

g/km, 1/100 km

Ri1

First type I test results of pollutant emissions

mg/km

Ri2

Second type I test results of pollutant emissions

mg/km

Ri3

Third type I test results of pollutant emissions

mg/km

s

Rated engine speed

min–1

TC

Temperature of the coolant

K

TO

Temperature of the engine oil

K

TP

Temperature of the spark-plug seat/gasket

K

T0

Standard ambient temperature

K

Tp

Temperature of the diluted gases during the test part, measured in the intake section of pump P

K

TT

Mean ambient temperature during the test

K

U

humidity

percent

v

Specified speed

 

V

Total volume of diluted gas

m3

vmax

Maximum design speed of test vehicle (L-category vehicle)

km/h

v0

Reference vehicle speed

km/h

V0

Volume of gas displaced by pump P during one revolution

m3/rev.

v1

Vehicle speed at which the measurement of the coast-down time begins

km/h

v2

Vehicle speed at which the measurement of the coast-down time ends

km/h

vi

Specified vehicle speed selected for the coast-down time measurement

km/h

w1

Weighting factor of cycle part 1 with cold start

w1hot

Weighting factor of cycle part 1 with warm condition

w2

Weighting factor of cycle part 2 with warm condition

w3

Weighting factor of cycle part 3 with warm condition

Appendix 2

Reference fuels

  • 1. 
    Specifications of reference fuels for testing vehicles in environmental tests, in particular for tailpipe and evaporative emissions testing
 

1.1.

The following tables list the technical data on liquid reference fuels to be used for environmental performance testing. The fuel specifications in this Appendix are consistent with the reference fuel specifications in Annex 10 to UNECE regulation No 83 Revision 4.

 

Type: Petrol (E5)

Parameter

Unit

Limits (1)

Test method

Minimum

Maximum

Research octane number, RON

 

95,0

EN 25164 / prEN ISO 5164

Motor octane number, MON

 

85,0

EN 25163 / prEN ISO 5163

Density at 15 °C

kg/m3

743

756

EN ISO 3675 / EN ISO 12185

Vapour pressure

kPa

56,0

60,0

EN ISO 13016-1 (DVPE)

Water content

% v/v

 

0,015

ASTM E 1064

Distillation:

       

Evaporated at 70 °C

% v/v

24,0

44,0

EN ISO 3405

Evaporated at 100 °C

% v/v

48,0

60,0

EN ISO 3405

Evaporated at 150 °C

% v/v

82,0

90,0

EN ISO 3405

Final boiling point

°C

190

210

EN ISO 3405

Residue

% v/v

2,0

EN ISO 3405

Hydrocarbon analysis:

       

Olefins

% v/v

3,0

13,0

ASTM D 1319

Aromatics

% v/v

29,0

35,0

ASTM D 1319

Benzene

% v/v

1,0

EN 12177

Saturates

% v/v

Report

ASTM 1319

Carbon/hydrogen ratio

 

Report

 

Carbon/oxygen ratio

 

Report

 

Induction period (2)

minutes

480

EN ISO 7536

Oxygen content (4)

% m/m

Report

EN 1601

Existent gum

mg/ml

0,04

EN ISO 6246

Sulphur content (3)

mg/kg

10

EN ISO 20846 / EN ISO 20884

Copper corrosion

 

Class 1

EN ISO 2160

Lead content

mg/l

5

EN 237

Phosphorus content

mg/l

1,3

ASTM D 3231

Ethanol (5)

% v/v

4,7

5,3

EN 1601 / EN 13132

 

Type: Ethanol (E85)

Parameter

Unit

Limits (6)

Test method (7)

Minimum

Maximum

Research octane number, RON

 

95,0

EN ISO 5164

Motor octane number, MON

 

85,0

EN ISO 5163

Density at 15 °C

kg/m3

Report

ISO 3675

Vapour pressure

kPa

40,0

60,0

EN ISO 13016-1 (DVPE)

Sulphur content (8)  (9)

mg/kg

10

EN ISO 20846

EN ISO 20884

Oxidation stability

minutes

360

 

EN ISO 7536

Existent gum content (solvent washed)

mg/(100 ml)

5

EN ISO 6246

Appearance

This shall be determined at ambient temperature or 15 °C, whichever is higher.

 

Clear and bright, visibly free of suspended or precipitated contaminants

Visual inspection

Ethanol and higher alcohols (12)

% V/V

83

85

EN 1601

EN 13132

EN 14517

Higher alcohols (C3-C8)

% V/V

2,0

 

Methanol

% V/V

 

0,5

 

Petrol (10)

% V/V

Balance

EN 228

Phosphorus

mg/l

0,3 (11)

ASTM D 3231

Water content

% V/V

 

0,3

ASTM E 1064

Inorganic chloride content

mg/l

 

1

ISO 6227

pHe

 

6,5

9,0

ASTM D 6423

Copper strip corrosion (3h at 50 °C)

Rating

Class 1

 

EN ISO 2160

Acidity (as acetic acid CH3COOH)

% m/m (mg/l)

0,005

(40)

ASTM D 1613

Carbon/hydrogen ratio

 

report

 

Carbon/oxygen ration

 

report

 
 

Type: Diesel fuel (B5)

Parameter

Unit

Limits (13)

Test method

Minimum

Maximum

Cetane number (14)

 

52,0

54,0

EN ISO 5165

Density at 15 °C

kg/m3

833

837

EN ISO 3675

Distillation:

       

50 % point

°C

245

EN ISO 3405

95 % point

°C

345

350

EN ISO 3405

Final boiling point

°C

370

EN ISO 3405

Flash point

°C

55

EN 22719

CFPP

°C

–5

EN 116

Viscosity at 40 °C

mm2/s

2,3

3,3

EN ISO 3104

Polycyclic aromatic hydrocarbons

% m/m

2,0

6,0

EN 12916

Sulphur content (15)

mg/kg

10

EN ISO 20846 / EN ISO 20884

Copper corrosion

 

Class 1

EN ISO 2160

Conradson carbon residue (10 % DR)

% m/m

0,2

EN ISO 10370

Ash content

% m/m

0,01

EN ISO 6245

Water content

% m/m

0,02

EN ISO 12937

Neutralisation (strong acid) number

mg KOH/g

0,02

ASTM D 974

Oxidation stability (16)

mg/ml

0,025

EN ISO 12205

Lubricity (HFRR wear scan diameter at 60 °C)

μm

400

EN ISO 12156

Oxidation stability at 110 °C (16)  (18)

h

20,0

 

EN 14112

FAME (17)

% v/v

4,5

5,5

EN 14078

 

Type: Liquefied petroleum gas (LPG)

Parameter

Unit

Fuel A

Fuel B

Test method

Composition:

     

ISO 7941

C3-content

percent vol

30 ± 2

85 ± 2

 

C4-content

percent vol

Balance (19)

Balance (20)

 

< C3, > C4

percent vol

max. 2

max. 2

 

Olefins

percent vol

max. 12

max. 15

 

Evaporation residue

mg/kg

max. 50

max. 50

ISO 13757 or EN 15470

Water at 0 °C

 

free

free

EN 15469

Total sulphur content

mg/kg

max. 50

max. 50

EN 24260 or

ASTM 6667

Hydrogen sulphide

 

none

none

ISO 8819

Copper strip corrosion

rating

Class 1

class 1

ISO 6251 (20)

Odour

 

characteristic

characteristic

 

Motor octane number

 

min. 89

min. 89

EN 589 Annex B

 

Type: Natural gas (NG)/biomethane  (21)

Parameter

Unit

Limits (23)

Test method

Minimum

Maximum

Reference fuel G20

Methane

percent mole

100

99

100

Balance (22)

percent mole

1

N2

percent mole

     

Sulphur content (22)

mg/m3

10

Wobbe Index (24) (net)

MJ/m3

48,2

47,2

49,2

Reference fuel G25

Methane

percent mole

86

84

88

Balance (22)

percent mole

1

N2

percent mole

14

12

16

Sulphur content (23)

mg/m3

10

Wobbe Index (net) (24)

MJ/m3

39,4

38,2

40,6

 

Type: Hydrogen for internal combustion engines

Parameter

Unit

Limits

Test method

Minimum

Maximum

Hydrogen purity

% mole

98

100

ISO 14687

Total hydrocarbon

μmol/mol

0

100

ISO 14687

Water (25)

μmol/mol

0

 (26)

ISO 14687

Oxygen

μmol/mol

0

 (26)

ISO 14687

Argon

μmol/mol

0

 (26)

ISO 14687

Nitrogen

μmol/mol

0

 (26)

ISO 14687

CO

μmol/mol

0

1

ISO 14687

Sulphur

μmol/mol

0

2

ISO 14687

Permanent particulates (27)

     

ISO 14687

 

Type: Hydrogen for hydrogen fuel cell vehicles

Parameter

Unit

Limits

Test method

Minimum

Maximum

Hydrogen fuel (28)

% mole

99,99

100

ISO 14687-2

Total gases (29)

μmol/mol

0

100

 

Total hydrocarbon

μmol/mol

0

2

ISO 14687-2

Water

μmol/mol

0

5

ISO 14687-2

Oxygen

μmol/mol

0

5

ISO 14687-2

Helium (He), Nitrogen (N2), Argon (Ar)

μmol/mol

0

100

ISO 14687-2

CO2

μmol/mol

0

2

ISO 14687-2

CO

μmol/mol

0

0,2

ISO 14687-2

Total sulphur compounds

μmol/mol

0

0,004

ISO 14687-2

Formaldehyde (HCHO)

μmol/mol

0

0,01

ISO 14687-2

Formic acid (HCOOH)

μmol/mol

0

0,2

ISO 14687-2

Ammonia (NH3)

μmol/mol

0

0,1

ISO 14687-2

Total halogenated compounds

μmol/mol

0

0,05

ISO 14687-2

Particulates size

μm

0

10

ISO 14687-2

Particulates concentration

μg/l

0

1

ISO 14687-2

 

  • (1) 
    The values quoted in the specifications are ‘true values’. For establishing the limit values, the terms of ISO 4259:2006 (Petroleum products — Determination and application of precision data in relation to methods of test) have been applied and for fixing a minimum value, a minimum difference of 2R above zero has been taken into account; for fixing a maximum and minimum value, the minimum difference is 4R (R = reproducibility).

Notwithstanding this measure, which is necessary for technical reasons, the fuel manufacturer shall nevertheless aim at a zero value where the stipulated maximum value is 2R and at the mean value when quoting maximum and minimum limits. Should it be necessary to clarify whether a fuel meets the requirements of the specifications, the terms of ISO 4259:2006 shall be applied.

  • (2) 
    The fuel may contain oxidation inhibitors and metal deactivators normally used to stabilise refinery petrol streams, but detergent/dispersive additives and solvent oils shall not be added.
  • (3) 
    The actual sulphur content of the fuel used for the type I test shall be reported.
  • (4) 
    Ethanol meeting the specification of prEN 15376 is the only oxygenate that shall be intentionally added to the reference fuel.
  • (5) 
    There shall be no intentional addition to this reference fuel of compounds containing phosphorus, iron, manganese or lead.
  • (6) 
    The values quoted in the specifications are ‘true values’. For establishing the limit values, the terms of ISO 4259:2006 (Petroleum products — Determination and application of precision data in relation to methods of test) have been applied and for fixing a minimum value, a minimum difference of 2R above zero has been taken into account; for fixing a maximum and minimum value, the minimum difference is 4R (R = reproducibility).

Notwithstanding this measure, which is necessary for technical reasons, the fuel manufacturer shall nevertheless aim at a zero value where the stipulated maximum value is 2R and at the mean value when quoting maximum and minimum limits. Should it be necessary to clarify whether a fuel meets the requirements of the specifications, the terms of ISO 4259:2006 shall be applied.

  • (7) 
    In cases of dispute, the procedures for resolving the dispute and interpreting the results based on test method precision, as described in EN ISO 4259:2006, shall be used.
  • (8) 
    In cases of national dispute concerning sulphur content, either EN ISO 20846:2011 or EN ISO 20884:2011 shall be referred to in the same way as in the national annex of EN 228.
  • (9) 
    The actual sulphur content of the fuel used for the type I test shall be reported.
  • The unleaded petrol content can be determined as 100 minus the sum of the percentage content of water and alcohols.
  • There shall be no intentional addition to this reference fuel of compounds containing phosphorus, iron, manganese or lead.
  • Ethanol meeting the specification of EN 15376 is the only oxygenate that shall be intentionally added to this reference fuel.
  • The values quoted in the specifications are ‘true values’. For establishing the limit values, the terms of ISO 4259:2006 (Petroleum products — Determination and application of precision data in relation to methods of test) have been applied and for fixing a minimum value, a minimum difference of 2R above zero has been taken into account; for fixing a maximum and minimum value, the minimum difference is 4R (R = reproducibility).

Notwithstanding this measure, which is necessary for technical reasons, the fuel manufacturer shall nevertheless aim at a zero value where the stipulated maximum value is 2R and at the mean value when quoting maximum and minimum limits. Should it be necessary to clarify whether a fuel meets the requirements of the specifications, the terms of ISO 4259:2006 shall be applied.

  • The range for Cetane number is not in accordance with the requirements of a minimum range of 4R. However, the terms of ISO 4259:2006 may be used to resolve disputes between fuel supplier and fuel user, provided replicate measurements, of sufficient number to archive the necessary precision, are taken in preference to single determinations.
  • The actual sulphur content of the fuel used for the type I test shall be reported.
  • Even though oxidation stability is controlled, it is likely that shelf life will be limited. Advice shall be sought from the supplier as to storage conditions and shelf life.
  • FAME content to meet the specification of EN 14214.
  • Oxidation stability can be demonstrated by EN ISO 12205:1995 or EN 14112:1996. This requirement shall be reviewed based on CEN/TC19 evaluations of oxidative stability performance and test limits.
  • Balance has to be read as follows: Formula.
  • This method may not accurately determine the presence of corrosive materials if the sample contains corrosion inhibitors or other chemicals which diminish the corrosivity of the sample to the copper strip. Therefore, the addition of such compounds for the sole purpose of biasing the test method is prohibited.
  • Biofuel’ means liquid or gaseous fuel for transport, produced from biomass.
  • Inerts (different from N2) + C2 + C2+.
  • Value to be determined at 293,2 K (20 °C) and 101,3 kPa.
  • Value to be determined at 273,2 K (0 °C) and 101,3 kPa.
  • Not to be condensed.
  • Combined water, oxygen, nitrogen and argon: 1 900 μmol/mol.
  • The hydrogen shall not contain dust, sand, dirt, gums, oils or other substances in an amount sufficient to damage the fuelling station equipment of the vehicle (engine) being fuelled.
  • The hydrogen fuel index is determined by subtracting the total content of non-hydrogen gaseous constituents listed in the table (total gases), expressed in mole percent, from 100 mole percent. It is less than the sum of the maximum allowable limits of all non-hydrogen constituents shown in the table.
  • The value of total gases is the sum of the values of the non-hydrogen constituents listed in the table, except the particulates.

Appendix 3

Chassis dynamometer system

  • 1. 
    Specification

1.1.   General requirements

 

1.1.1.

The dynamometer shall be capable of simulating road load within one of the following classifications:

 

(a)

dynamometer with fixed load curve, i.e. a dynamometer whose physical characteristics provide a fixed load curve shape;

 

(b)

dynamometer with adjustable load curve, i.e. a dynamometer with at least two road load parameters that can be adjusted to shape the load curve.

 

1.1.2.

Dynamometers with electric inertia simulation shall be demonstrated to be equivalent to mechanical inertia systems. The means by which equivalence is established are described in point 4.

 

1.1.3.

Where the total resistance to progress on the road cannot be reproduced on the chassis dynamometer between speeds of 10 km/h and 120 km/h, it is recommended that a chassis dynamometer with the characteristics defined in point 1.2. should be used.

 

1.1.3.1.

The load absorbed by the brake and the chassis dynamometer (internal frictional effects) between the speeds of 0 and 120 km/h is as follows:

Equation Ap3-1:

Formula (without being negative)

where:

 

F

=

total load absorbed by the chassis dynamometer (N);

a

=

value equivalent to rolling resistance (N);

b

=

value equivalent to coefficient of air resistance (N/(km/h)2);

v

=

vehicle speed (km/h);

F80

=

load at 80 km/h (N). Alternatively for vehicles that cannot attain 80 km/h the load at the reference vehicle speeds vj in table Ap8-1 in Appendix 8 shall be determined.

1.2.   Specific requirements

 

1.2.1.

The setting of the dynamometer shall not be affected by the lapse of time. It shall not produce any vibrations perceptible to the vehicle and likely to impair the vehicle’s normal operations.

 

1.2.2.

The chassis dynamometer may have one roller or two rollers in the cases of three-wheel vehicles with two front wheels and quadricycles. In such cases, the front roller shall drive, directly or indirectly, the inertial masses and the power-absorption device.

 

1.2.3.

It shall be possible to measure and read the indicated load to an accuracy of ± 5 percent.

 

1.2.4.

In the case of a dynamometer with a fixed load curve, the accuracy of the load setting at 80 km/h or of the load setting at the reference vehicle speeds (30 km/h, respectively 15 km/h) referred to in point 1.1.3.1. for vehicles that cannot attain 80 km/h, shall be ± 5 percent. In the case of a dynamometer with adjustable load curve, the accuracy of matching dynamometer load to road load shall be ± 5 percent for vehicle speeds > 20 km/h and ± 10 percent for vehicle speeds ≤ 20 km/h. Below this vehicle speed, dynamometer absorption shall be positive.

 

1.2.5.

The total inertia of the rotating parts (including the simulated inertia where applicable) shall be known and shall be within ± 10 kg of the inertia class for the test.

 

1.2.6.

The speed of the vehicle shall be measured by the speed of rotation of the roller (the front roller in the case of a two-roller dynamometer). It shall be measured with an accuracy of ± 1 km/h at vehicle speeds over 10 km/h. The distance actually driven by the vehicle shall be measured by the movement of rotation of the roller (the front roller in the case of a two-roller dynamometer).

  • 2. 
    Dynamometer calibration procedure

2.1.   Introduction

This section describes the method to be used to determine the load absorbed by a dynamometer brake. The load absorbed comprises the load absorbed by frictional effects and the load absorbed by the power-absorption device. The dynamometer is brought into operation beyond the range of test speeds. The device used for starting up the dynamometer is then disconnected; the rotational speed of the driven roller decreases. The kinetic energy of the rollers is dissipated by the power-absorption unit and by the frictional effects. This method disregards variations in the roller’s internal frictional effects caused by rollers with or without the vehicle. The frictional effects of the rear roller shall be disregarded when the roller is free.

2.2.   Calibration of the load indicator at 80 km/h or of the load indicator referred to in point 1.1.3.1. for vehicles that cannot attain 80 km/h.

The following procedure shall be used for calibration of the load indicator to 80 km/h or the applicable load indicator referred to in point 1.1.3.1. for vehicles that cannot attain 80 km/h, as a function of the load absorbed (see also Figure Ap3-1):

2.2.1.   Measure the rotational speed of the roller if this has not already been done. A fifth wheel, a revolution counter or some other method may be used.

2.2.2.   Place the vehicle on the dynamometer or devise some other method for starting up the dynamometer.

2.2.3.   Use the flywheel or any other system of inertia simulation for the particular inertia class to be used.

Figure Ap3-1

Power absorbed by the chassis dynamometer

Image

Legend:

 

Formula

Formula

Formula

2.2.4.   Bring the dynamometer to a vehicle speed of 80 km/h or to the reference vehicle speed referred to in point 1.1.3.1. for vehicles that cannot attain 80 km/h.

2.2.5.   Note the load indicated Fi (N).

2.2.6.   Bring the dynamometer to a speed of 90 km/h or to the respective reference vehicle speed referred to in to in point 1.1.3.1. plus 5 km/h for vehicles that cannot attain 80 km/h

2.2.7.   Disconnect the device used to start up the dynamometer.

2.2.8.   Note the time taken by the dynamometer to pass from a vehicle speed of 85 to 75 km/h, or for vehicles that cannot attain 80 km/h referred to in Table Ap8-1 of Appendix 8, note the time between vj + 5 km/h to vj– 5 km/h.

2.2.9.   Set the power-absorption device at a different level.

2.2.10.   The requirements of points 2.2.4. to 2.2.9. shall be repeated sufficiently often to cover the range of loads used.

2.2.11.   Calculate the load absorbed using the formula:

Equation Ap3-2:

Formula

where:

 

F

=

load absorbed (N);

mi

=

equivalent inertia in kg (excluding the inertial effects of the free rear roller);

Δ v

=

vehicle speed deviation in m/s (10 km/h = 2,775 m/s);

Δ t

=

time taken by the roller to pass from 85 km/h to 75 km/h, or for vehicles that cannot attain 80 km/h from 35 – 25 km/h, respectively from 20 – 10 km/h, referred to in Table Ap 7-1 of Appendix 7.

2.2.12.   Figure Ap3-2 shows the load indicated at 80 km/h in terms of load absorbed at 80 km/h.

Figure Ap3-2

Load indicated at 80 km/h in terms of load absorbed at 80 km/h

Image

2.2.13.   The requirements laid down in points 2.2.3. to 2.2.12. shall be repeated for all inertia classes to be used.

2.3.   Calibration of the load indicator at other speeds

The procedures described in point 2.2. shall be repeated as often as necessary for the chosen vehicle speeds.

2.4.   Calibration of force or torque

The same procedure shall be used for force or torque calibration.

  • 3. 
    Verification of the load curve

3.1.   Procedure

The load-absorption curve of the dynamometer from a reference setting at a speed of 80 km/h or for vehicles that cannot attain 80 km/h at the respective reference vehicle speeds referred to in point 1.1.3.1., shall be verified as follows:

 

3.1.1.

Place the vehicle on the dynamometer or devise some other method for starting up the dynamometer.

 

3.1.2.

Adjust the dynamometer to the absorbed load (F80) at 80 km/h, or for vehicles that cannot attain 80 km/h to the absorbed load Fvj at the respective target vehicle speed vj referred to in point 1.1.3.1.

 

3.1.3.

Note the load absorbed at 120, 100, 80, 60, 40 and 20 km/h or for vehicles that cannot attain 80 km/h absorbed at the target vehicles speeds vj referred to in point 1.1.3.1.

 

3.1.4.

Draw the curve F(v) and verify that it corresponds to the requirements of point 1.1.3.1.

 

3.1.5.

Repeat the procedure set out in points 3.1.1. to 3.1.4. for other values of F80 and for other values of inertia.

4   Verification of simulated inertia

4.1.   Object

The method described in this Appendix makes it possible to check that the simulated total inertia of the dynamometer is carried out satisfactorily in the running phase of the operating cycle. The manufacturer of the chassis dynamometer shall specify a method for verifying the specifications according to point 4.3.

4.2.   Principle

4.2.1.   Drawing-up working equations

Since the dynamometer is subjected to variations in the rotating speed of the roller(s), the force at the surface of the roller(s) can be expressed by:

Equation Ap3-3:

Formula

where:

 
 

F is the force at the surface of the roller(s) in N;

 
 

I is the total inertia of the dynamometer (equivalent inertia of the vehicle);

 
 

IM is the inertia of the mechanical masses of the dynamometer;

 
 

γ is the tangential acceleration at roller surface;

 
 

F1 is the inertia force.

Note: An explanation of this formula with reference to dynamometers with mechanically simulated inertia is appended.

Thus, total inertia is expressed as follows:

Equation Ap3-4:

Formula

where:

 
 

Im can be calculated or measured by traditional methods;

 
 

F1 can be measured on the dynamometer;

 
 

γ can be calculated from the peripheral speed of the rollers.

The total inertia (I) will be determined during an acceleration or deceleration test with values no lower than those obtained on an operating cycle.

4.2.2.   Specification for the calculation of total inertia

The test and calculation methods shall make it possible to determine the total inertia I with a relative error (ΔI/I) of less than ± 2 percent.

4.3.   Specification

4.3.1.   The mass of the simulated total inertia I shall remain the same as the theoretical value of the equivalent inertia (see Appendix 5) within the following limits:

 

4.3.1.1.

± 5 percent of the theoretical value for each instantaneous value;

 

4.3.1.2.

± 2 percent of the theoretical value for the average value calculated for each sequence of the cycle.

The limit specified in point 4.3.1.1. is brought to ± 50 percent for one second when starting and, for vehicles with manual transmission, for two seconds during gear changes.

4.4.   Verification procedure

4.4.1.   Verification is carried out during each test throughout the test cycles defined in Appendix 6 of Annex II.

4.4.2.   However, if the requirements laid down in point 4.3. are met, with instantaneous accelerations which are at least three times greater or smaller than the values obtained in the sequences of the theoretical cycle, the verification described in point 4.4.1. will not be necessary.

Appendix 4

Exhaust dilution system

  • 1. 
    System specification

1.1.   System overview

A full-flow exhaust dilution system shall be used. This requires that the vehicle exhaust be continuously diluted with ambient air under controlled conditions. The total volume of the mixture of exhaust and dilution air shall be measured and a continuously proportional sample of the volume shall be collected for analysis. The quantities of pollutants are determined from the sample concentrations, corrected for the pollutant content of the ambient air and the totalised flow over the test period. The exhaust dilution system shall consist of a transfer tube, a mixing chamber and dilution tunnel, a dilution air conditioning, a suction device and a flow measurement device. Sampling probes shall be fitted in the dilution tunnel as specified in Appendices 3, 4 and 5. The mixing chamber described in this point shall be a vessel, such as those illustrated in Figures Ap4-1 and Ap4-2, in which vehicle exhaust gases and the dilution air are combined so as to produce a homogeneous mixture at the chamber outlet.

1.2.   General requirements

1.2.1.   The vehicle exhaust gases shall be diluted with a sufficient amount of ambient air to prevent any water condensation in the sampling and measuring system under any conditions which may occur during a test.

1.2.2.   The mixture of air and exhaust gases shall be homogeneous at the point where the sampling probe is located (see point 1.3.3.). The sampling probe shall extract a representative sample of the diluted exhaust gas.

1.2.3.   The system shall enable the total volume of the diluted exhaust gases to be measured.

1.2.4.   The sampling system shall be gas-tight. The design of the variable dilution sampling system and the materials that go to make it up shall be such that they do not affect the pollutant concentration in the diluted exhaust gases. Should any component in the system (heat exchanger, cyclone separator, blower, etc.) change the concentration of any of the pollutants in the diluted exhaust gases and the fault cannot be corrected, sampling for that pollutant shall be carried out upstream from that component.

1.2.5.   All parts of the dilution system that are in contact with raw and diluted exhaust gas shall be designed to minimise deposition or alteration of the particulates or particles. All parts shall be made of electrically conductive materials that do not react with exhaust gas components and shall be electrically grounded to prevent electrostatic effects.

1.2.6.   If the vehicle being tested is equipped with an exhaust pipe comprising several branches, the connecting tubes shall be connected as near as possible to the vehicle without adversely affecting its operation.

1.2.7.   The variable-dilution system shall be designed so as to enable the exhaust gases to be sampled without appreciably changing the back-pressure at the exhaust pipe outlet.

1.2.8.   The connecting tube between the vehicle and dilution system shall be so designed as to minimise heat loss.

1.3.   Specific requirements

1.3.1.   Connection to vehicle exhaust

The connecting tube between the vehicle exhaust outlets and the dilution system shall be as short as possible and satisfy the following requirements:

 

(a)

the tube shall be less than 3,6 m long, or less than 6,1 m long if heat insulated. Its internal diameter may not exceed 105 mm;

 

(b)

it shall not cause the static pressure at the exhaust outlets on the test vehicle to differ by more than ± 0,75 kPa at 50 km/h, or more than ± 1,25 kPa for the whole duration of the test, from the static pressures recorded when nothing is connected to the vehicle exhaust outlets. The pressure shall be measured in the exhaust outlet or in an extension having the same diameter, as near as possible to the end of the pipe. Sampling systems capable of maintaining the static pressure to within ± 0,25 kPa may be used if a written request from a manufacturer to the technical service substantiates the need for the closer tolerance;

 

(c)

it shall not change the nature of the exhaust gas;

 

(d)

any elastomeric connectors employed shall be as thermally stable as possible and have minimum exposure to the exhaust gases.

1.3.2.   Dilution air conditioning

The dilution air used for the primary dilution of the exhaust in the CVS tunnel shall be passed through a medium capable of reducing particles in the most penetrating particle size of the filter material by ≥ 99,95 percent, or through a filter of at least class H13 of EN 1822:1998. This represents the specification of High Efficiency Particulate Air (HEPA) filters. The dilution air may be charcoal scrubbed before being passed to the HEPA filter. It is recommended that an additional coarse particle filter is situated before the HEPA filter and after the charcoal scrubber, if used. At the vehicle manufacturer’s request, the dilution air may be sampled according to good engineering practice to determine the tunnel contribution to background particulate mass levels, which can then be subtracted from the values measured in the diluted exhaust.

1.3.3.   Dilution tunnel

Provision shall be made for the vehicle exhaust gases and the dilution air to be mixed. A mixing orifice may be used. In order to minimise the effects on the conditions at the exhaust outlet and to limit the drop in pressure inside the dilution-air conditioning device, if any, the pressure at the mixing point shall not differ by more than ± 0,25 kPa from atmospheric pressure. The homogeneity of the mixture in any cross-section at the location of the sampling probe shall not vary by more than ±2 percent from the average of the values obtained for at least five points located at equal intervals on the diameter of the gas stream. For particulate and particle emissions sampling, a dilution tunnel shall be used which:

 

(a)

shall consist of a straight tube of electrically-conductive material, which shall be earthed;

 

(b)

shall be small enough in diameter to cause turbulent flow (Reynolds number ≥ 4 000) and of sufficient length to cause complete mixing of the exhaust and dilution air;

 

(c)

shall be at least 200 mm in diameter;

 

(d)

may be insulated.

1.3.4.   Suction device

This device may have a range of fixed speeds to ensure sufficient flow to prevent any water condensation. This result is generally obtained if the flow is either:

 

(a)

twice the maximum flow of exhaust gas produced by accelerations of the driving cycle; or

 

(b)

sufficient to ensure that the CO2 concentration in the dilute exhaust sample bag is less than 3 percent by volume for petrol and diesel, less than 2,2 percent by volume for LPG and less than 1,5 percent by volume for NG/biomethane.

1.3.5.   Volume measurement in the primary dilution system

The method for measuring total dilute exhaust volume incorporated in the constant volume sampler shall be such that measurement is accurate to ± 2 percent under all operating conditions. If the device cannot compensate for variations in the temperature of the mixture of exhaust gases and dilution air at the measuring point, a heat exchanger shall be used to maintain the temperature to within ± 6 K of the specified operating temperature. If necessary, some form of protection for the volume measuring device may be used, e.g. a cyclone separator, bulk stream filter, etc. A temperature sensor shall be installed immediately before the volume measuring device. This sensor shall have an accuracy and a precision of ± 1 K and a response time of 0,1 s at 62 percent of a given temperature variation (value measured in silicone oil). The difference from atmospheric pressure shall be measured upstream and, if necessary, downstream from the volume measuring device. The pressure measurements shall have a precision and an accuracy of ± 0,4 kPa during the test.

1.4.   Recommended system descriptions

Figure Ap 4-1 and Figure Ap 4-2 are schematic drawings of two types of recommended exhaust dilution systems that meet the requirements of this Annex. Since various configurations can produce accurate results, exact conformity with these figures is not essential. Additional components such as instruments, valves, solenoids and switches may be used to provide additional information and coordinate the functions of the component system.

1.4.1.   Full-flow dilution system with positive displacement pump

Figure Ap4-1

Positive displacement pump dilution system

Image

The positive displacement pump (PDP) full-flow dilution system satisfies the requirements of this Annex by metering the flow of gas through the pump at constant temperature and pressure. The total volume is measured by counting the revolutions of the calibrated positive displacement pump. The proportional sample is achieved by sampling with pump, flow meter and flow control valve at a constant flow rate. The collecting equipment consists of:

 

1.4.1.1.

A filter (refer to DAF in Figure Ap 4-1) for the dilution air shall be installed, which can be preheated if necessary. This filter shall consist of the following filters in sequence: an optional activated charcoal filter (inlet side) and a high efficiency particulate air (HEPA) filter (outlet side). It is recommended that an additional coarse particle filter is situated before the HEPA filter and after the charcoal filter, if used. The purpose of the charcoal filter is to reduce and stabilise the hydrocarbon concentrations of ambient emissions in the dilution air;

 

1.4.1.2.

A transfer tube (TT) by which vehicle exhaust is admitted into a dilution tunnel (DT) in which the exhaust gas and dilution air are mixed homogeneously;

 

1.4.1.3.

The positive displacement pump (PDP), producing a constant-volume flow of the air/exhaust-gas mixture. The PDP revolutions, together with associated temperature and pressure measurement, are used to determine the flow rate;

 

1.4.1.4.

A heat exchanger (HE) of a capacity sufficient to ensure that throughout the test the temperature of the air/exhaust-gas mixture measured at a point immediately upstream of the positive displacement pump is within 6 K of the average operating temperature during the test. This device shall not affect the pollutant concentrations of diluted gases taken off afterwards for analysis.

 

1.4.1.5.

A mixing chamber (MC) in which exhaust gas and air are mixed homogeneously and which may be located close to the vehicle so that the length of the transfer tube (TT) is minimised.

1.4.2.   Full-flow dilution system with critical-flow venturi

Figure Ap4-2

Critical-flow venturi dilution system

Image

The use of a critical-flow venturi (CFV) for the full-flow dilution system is based on the principles of flow mechanics for critical flow. The variable mixture flow rate of dilution and exhaust gas is maintained at sonic velocity which is directly proportional to the square root of the gas temperature. Flow is continually monitored, computed and integrated throughout the test. The use of an additional critical-flow sampling venturi ensures the proportionality of the gas samples taken from the dilution tunnel. As pressure and temperature are both equal at the two venturi inlets, the volume of the gas flow diverted for sampling is proportional to the total volume of diluted exhaust-gas mixture produced, and thus the requirements of this Annex are met. The collecting equipment consists of:

 

1.4.2.1.

A filter (DAF) for the dilution air which can be preheated if necessary. This filter shall consist of the following filters in sequence: an optional activated charcoal filter (inlet side) and a high efficiency particulate air (HEPA) filter (outlet side). It is recommended that an additional coarse particle filter is situated before the HEPA filter and after the charcoal filter, if used. The purpose of the charcoal filter is to reduce and stabilise the hydrocarbon concentrations of ambient emissions in the dilution air;

 

1.4.2.2.

A mixing chamber (MC) in which exhaust gas and air are mixed homogeneously and which may be located close to the vehicle so that the length of the transfer tube (TT) is minimised;

 

1.4.2.3.

A dilution tunnel (DT) from which particulates and particles are sampled;

 

1.4.2.4.

Some form of protection for the measurement system may be used, e.g. a cyclone separator, bulk stream filter, etc.;

 

1.4.2.5.

A measuring critical-flow venturi tube (CFV) to measure the flow volume of the diluted exhaust gas;

 

1.4.2.6.

A blower (BL) of sufficient capacity to handle the total volume of diluted exhaust gas.

  • 2. 
    CVS calibration procedure

2.1.   General requirements

The CVS system shall be calibrated by using an accurate flow-meter and a restricting device. The flow through the system shall be measured at various pressure readings and the control parameters of the system measured and related to the flows. The flow-meter shall be dynamic and suitable for the high flow-rate encountered in CVS testing. The device shall be of certified accuracy traceable to an approved national or international standard.

2.1.1.   Various types of flow-meter may be used, e.g. calibrated venturi, laminar flow-meter, calibrated turbine-meter, provided that they are dynamic measurement systems and can meet the requirements of point 1.3.5. of this Appendix.

2.1.2.   The following points give details of methods of calibrating PDP and CFV units, using a laminar flow-meter which gives the required accuracy, together with a statistical check on the calibration validity.

2.2.   Calibration of the positive displacement pump (PDP)

2.2.1.   The following calibration procedure outlines the equipment, the test configuration and the various parameters that are measured to establish the flow-rate of the CVS pump. All the parameters relating to the pump are simultaneously measured with the parameters relating to the flow-meter which is connected in series with the pump. The calculated flow rate (given in m3/min at pump inlet, absolute pressure and temperature) can then be plotted against a correlation function that is the value of a specific combination of pump parameters. The linear equation that relates the pump flow and the correlation function is then determined. If a CVS has a multiple speed drive, a calibration shall be performed for each range used.

2.2.2.   This calibration procedure is based on the measurement of the absolute values of the pump and flow-meter parameters that relate to the flow rate at each point. Three conditions shall be maintained to ensure the accuracy and integrity of the calibration curve:

 

2.2.2.1.

The pump pressures shall be measured at tappings on the pump rather than at the external piping on the pump inlet and outlet. Pressure taps that are mounted at the top centre and bottom centre of the pump drive head plate are exposed to the actual pump cavity pressures and therefore reflect the absolute pressure differentials;

 

2.2.2.2.

Temperature stability shall be maintained during the calibration. The laminar flow-meter is sensitive to inlet temperature oscillations which cause the data points to be scattered. Gradual changes of ± 1 K in temperature are acceptable as long as they occur over a period of several minutes;

 

2.2.2.3.

All connections between the flow-meter and the CVS pump shall be free of any leakage.

2.2.3.   During an exhaust emission test, the measurement of these same pump parameters enables the user to calculate the flow rate from the calibration equation.

2.2.4.   Figure Ap 4-3 of this Appendix shows one possible test set-up. Variations are permissible, provided that the technical service approves them as being of comparable accuracy. If the set-up shown in Figure Ap 4-3 is used, the following data shall be found within the limits of precision given:

 
 

Barometric pressure (corrected) (Pb) ± 0,03 kPa

 
 

Ambient temperature (T) ± 0,2 K

 
 

Air temperature at LFE (ETI) ± 0,15 K

 
 

Pressure depression upstream of LFE (EPI) ± 0,01 kPa

 
 

Pressure drop across the LFE matrix (EDP) ± 0,0015 kPa

 
 

Air temperature at CVS pump inlet (PTI) ± 0,2 K

 
 

Air temperature at CVS pump outlet (PTO) ± 0,2 K

 
 

Pressure depression at CVS pump inlet (PPI) ± 0,22 kPa

 
 

Pressure head at CVS pump outlet (PPO) ± 0,22 kPa

 
 

Pump revolutions during test period (n) ± 1 min-1

 
 

Elapsed time for period (minimum 250 s) (t) ± 0,1 s

Figure Ap4-3

PDP calibration configuration

Image

2.2.5.   After the system has been connected as shown in Figure Ap 4-3, set the variable restrictor in the wide-open position and run the CVS pump for 20 minutes before starting the calibration.

2.2.6.   Reset the restrictor valve to a more restricted condition in an increment of pump inlet depression (about 1 kPa) that will yield a minimum of six data points for the total calibration. Allow the system to stabilise for three minutes and repeat the data acquisition.

2.2.7.   The air flow rate (Qs) at each test point is calculated in standard m3/min from the flow-meter data using the manufacturer’s prescribed method.

2.2.8.   The air flow-rate is then converted to pump flow (V0) in m3/rev at absolute pump inlet temperature and pressure.

Equation Ap 4-1:

Formula

where:

V0= pump flow rate at Tp and Pp (m3/rev);

Qs= air flow at 101,33 kPa and 273,2 K (m3/min);

Tp= pump inlet temperature (K);

Pp= absolute pump inlet pressure (kPa);

n= pump speed (min-1).

2.2.9.   To compensate for the interaction of pump speed pressure variations at the pump and the pump slip rate, the correlation function (x0) between the pump speed (n), the pressure differential from pump inlet to pump outlet, and the absolute pump outlet pressure is calculated as follows:

Equation Ap 4-2:

Formula

where:

x0= correlation function;

ΔPp= pressure differential from pump inlet to pump outlet (kPa);

Pe= absolute outlet pressure (PPO + Pb) (kPa).

 

2.2.9.1.

A linear least-square fit is performed to generate the calibration equations which have the formula:

Equation Ap 4-3:

Formula

Formula

D0, M, A and B are the slope-intercept constants describing the lines.

2.2.10.   A CVS system that has multiple speeds shall be calibrated on each speed used. The calibration curves generated for the ranges shall be approximately parallel and the intercept values (D0) shall increase as the pump flow range decreases.

2.2.11   If the calibration has been performed carefully, the calculated values from the equation will be within 0.5 percent of the measured value of V0.Values of M will vary from one pump to another. Calibration is performed at pump start-up and after major maintenance.

2.3.   Calibration of the critical-flow venturi (CFV)

2.3.1.   Calibration of the CFV is based on the flow equation for a critical-flow venturi:

Equation Ap 4-4:

Formula

where:

Qs= flow;

Kv= calibration coefficient;

P= absolute pressure (kPa);

T= absolute temperature (K).

Gas flow is a function of inlet pressure and temperature. The calibration procedure described in points 2.3.2. to 2.3.7. shall establish the value of the calibration coefficient at measured values of pressure, temperature and air flow.

2.3.2.   The manufacturer’s recommended procedure shall be followed for calibrating electronic portions of the CFV.

2.3.3.   Measurements for flow calibration of the critical-flow venturi are required and the following data shall be found within the limits of precision given:

 
 

Barometric pressure (corrected) (Pb) ± 0,03 kPa

 
 

LFE air temperature, flow-meter (ETI) ± 0,15 K

 
 

Pressure depression upstream of LFE (EPI) ± 0,01 kPa

 
 

Pressure drop across (EDP) LFE matrix ± 0,0015 kPa

 
 

Air flow (Qs) ± 0,5 percent

 
 

CFV inlet depression (PPI) ± 0,02 kPa

 
 

Temperature at venturi inlet (Tv) ± 0,2 K.

2.3.4.   The equipment shall be set up as shown in Figure Ap 4-4 and checked for leaks. Any leaks between the flow-measuring device and the critical-flow venturi will seriously affect the accuracy of the calibration.

Figure Ap4-4

CFV calibration configuration

Image

2.3.5.   The variable-flow restrictor shall be set to the open position, the blower shall be started and the system stabilised. Data from all instruments shall be recorded.

2.3.6.   The flow restrictor shall be varied and at least eight readings shall be taken across the critical flow range of the venturi.

2.3.7.   The data recorded during the calibration shall be used in the following calculations. The air flow-rate (Qs) at each test point is calculated from the flow-meter data using the manufacturer’s prescribed method. Calculate values of the calibration coefficient (Kv) for each test point:

Equation Ap 4-5:

Formula

where:

Qs= flow-rate in m3/min at 273,2 K and 101,3 kPa;

Tv= temperature at the venturi inlet (K);

Pv= absolute pressure at the venturi inlet (kPa).

Plot Kv as a function of venturi inlet pressure. For sonic flow, Kv will have a relatively constant value. As pressure decreases (vacuum increases), the venturi becomes unchoked and Kv decreases. The resultant Kv changes are not permissible. For a minimum of eight points in the critical region, calculate an average Kv and the standard deviation. If the standard deviation exceeds 0,3 percent of the average Kv, take corrective action.

  • 3. 
    System verification procedure

3.1.   General requirements

The total accuracy of the CVS sampling system and analytical system shall be determined by introducing a known mass of a pollutant gas into the system while it is being operated as if during a normal test and then analysing and calculating the pollutant mass according to the formula in point 4, except that the density of propane shall be taken as 1,967 grams per litre at standard conditions. The two techniques described in points 3.2. and 3.3. are known to give sufficient accuracy. The maximum permissible deviation between the quantity of gas introduced and the quantity of gas measured is 5 percent.

3.2.   CFO method

3.2.1.   Metering a constant flow of pure gas (CO or C3H8) using a critical-flow orifice device

3.2.2.   A known quantity of pure gas (CO or C3H8) is fed into the CVS system through the calibrated critical orifice. If the inlet pressure is high enough, the flow-rate (q), which is adjusted by means of the critical-flow orifice, is independent of orifice outlet pressure (critical flow). If deviations exceeding 5 percent occur, the cause of the malfunction shall be determined and corrected. The CVS system is operated as in an exhaust emission test for about five to ten minutes. The gas collected in the sampling bag is analysed by the usual equipment and the results compared to the concentration of the gas samples which was known beforehand.

3.3.   Gravimetric method

3.3.1.   Metering a limited quantity of pure gas (CO or C3H8) by means of a gravimetric technique

3.3.2.   The following gravimetric procedure may be used to verify the CVS system. The weight of a small cylinder filled with either carbon monoxide or propane is determined with a precision of ± 0,01 g. For about five to ten minutes, the CVS system is operated as in a normal exhaust emission test, while CO or propane is injected into the system. The quantity of pure gas involved is determined by means of differential weighing. The gas accumulated in the bag is analysed using the equipment normally used for exhaust-gas analysis. The results are then compared to the concentration figures computed previously.

Appendix 5

Classification of equivalent inertia mass and running resistance

 

1.

The chassis dynamometer can be set using the running resistance table instead of the running resistance force obtained by the coast-down methods set out in Appendices 7 or 8. In this table method, the chassis dynamometer shall be set by the reference mass regardless of particular L-category vehicle characteristics.

 

2.

The flywheel equivalent inertia mass mref shall be the equivalent inertia mass mi specified in point 4.5.6.1.2. The chassis dynamometer shall be set by the rolling resistance of front wheel ‘a’ and the aerodynamic drag coefficient ‘b’ specified in the following table.

Table Ap5-1

Classification of equivalent inertia mass and running resistance used for L-category vehicles

 

Reference mass mref

(kg)

Equivalent inertia mass mi

(kg)

Rolling resistance of front wheel a

(N)

Aero drag coefficient b

Formula

Formula

20

1,8

0,0203

Formula

30

2,6

0,0205

Formula

40

3,5

0,0206

Formula

50

4,4

0,0208

Formula

60

5,3

0,0209

Formula

70

6,8

0,0211

Formula

80

7,0

0,0212

Formula

90

7,9

0,0214

Formula

100

8,8

0,0215

Formula

110

9,7

0,0217

Formula

120

10,6

0,0218

Formula

130

11,4

0,0220

Formula

140

12,3

0,0221

Formula

150

13,2

0,0223

Formula

160

14,1

0,0224

Formula

170

15,0

0,0226

Formula

180

15,8

0,0227

Formula

190

16,7

0,0229

Formula

200

17,6

0,0230

Formula

210

18,5

0,0232

Formula

220

19,4

0,0233

Formula

230

20,2

0,0235

Formula

240

21,1

0,0236

Formula

250

22,0

0,0238

Formula

260

22,9

0,0239

Formula

270

23,8

0,0241

Formula

280

24,6

0,0242

Formula

290

25,5

0,0244

Formula

300

26,4

0,0245

Formula

310

27,3

0,0247

Formula

320

28,2

0,0248

Formula

330

29,0

0,0250

Formula

340

29,9

0,0251

Formula

350

30,8

0,0253

Formula

360

31,7

0,0254

Formula

370

32,6

0,0256

Formula

380

33,4

0,0257

Formula

390

34,3

0,0259

Formula

400

35,2

0,0260

Formula

410

36,1

0,0262

Formula

420

37,0

0,0263

Formula

430

37,8

0,0265

Formula

440

38,7

0,0266

Formula

450

39,6

0,0268

Formula

460

40,5

0,0269

Formula

470

41,4

0,0271

Formula

480

42,2

0,0272

Formula

490

43,1

0,0274

Formula

500

44,0

0,0275

At every 10 kg

At every 10 kg

Formula

 (1)

Formula

 (2)

 

  • (1) 
    The value shall be rounded to one decimal place.
  • (2) 
    The value shall be rounded to four decimal places.

Appendix 6

Driving cycles for type I tests

  • (1) 
    UNECE Regulation No 47 (ECE R47)-based test cycle
  • 1. 
    Description of the ECE R47 test cycle

The ECE R47 test cycle to be used on the chassis dynamometer shall be as depicted in the following graph:

Figure Ap6-1

ECE R47-based test cycle

Image

The ECE R47-based test cycle lasts 896 seconds and consists of eight elementary cycles to be carried out without interruption. Each cycle shall comprise of seven driving condition phases (idling, acceleration, steady speed, deceleration, etc.) as set out in points 2 and 3. The truncated vehicle speed trace restricted to maximum 25 km/h is applicable for L1e-A and L1e-B vehicles with a maximum design speed of 25 km/h.

  • 2. 
    The following elementary cycle characteristic in the shape of the dynamometer-roller speed profile versus test time shall be repeated eight times in total. The cold phase means the first 448 s (four cycles) after cold start of the propulsion and warming-up of the engine. The warm or hot phase is the last 448 s (four cycles), when the propulsion is further warming up and finally running at operating temperature.

Table Ap6-1

ECE R47 single cycle characteristic vehicle speed profile versus test time

 

No. of operation

Operation

Acceleration

(m/s2)

Roller speed

(km/h)

Duration of operation

(s)

Total duration of one cycle

(s)

1

Idling

8

 

2

Acceleration

full throttle

0-max

 

8

3

Constant speed

full throttle

max

57

 

4

Deceleration

–0,56

max -20

 

65

5

Constant speed

20

36

101

6

Deceleration

–0,93

20-0

6

107

7

Idling

5

112

  • 3. 
    ECE R47 test cycle tolerances

The test cycle tolerances indicated in Figure Ap 6-2 for one elementary cycle of the ECE R47 test cycle shall be respected in principle during the whole test cycle.

Figure Ap6-2

ECE R47 based test cycle tolerances

Image

  • (2) 
    UNECE Regulation No 40 (ECE R40)-based driving cycle
  • 1. 
    Description of the test cycle

The ECE R40 test cycle to be used on the chassis dynamometer shall be as depicted in the following graph:

Figure Ap6-3

ECE R40-based test cycle

Image

The ECE R40-based test cycle lasts 1 170 seconds and consists of six elementary urban operating cycle cycles to be carried out without interruption. Each elementary urban cycle shall comprise fifteen driving condition phases (idling, acceleration, steady speed, deceleration, etc.) as set out in points 2 and 3.

  • 2. 
    The following cycle characteristic dynamometer-roller speed profile versus test time shall be repeated 6 times in total. The cold phase means the first 195 s (one elementary urban cycle) after cold start of the propulsion and warming up. The warm phase is the last 975 s (five elementary urban cycles), when the propulsion is further warming up and finally running at operating temperature.

Table Ap6-2

ECE R40 elementary urban cycle characteristic, vehicle speed profile versus test time

 

No

Nature of operation

Phase

Acceleration

(m/s2)

Speed

(km/h)

Duration of each

Cumulative time

(s)

Gear to be used in the case of a manual-shift gearbox

Operation

(s)

Phase

(s)

1

Idling

1

0

0

11

11

11

6 s PM + 5 s K (1)

2

Acceleration

2

1,04

0-15

4

4

15

According to manufacturer’s instructions

3

Steady speed

3

0

15

8

8

23

4

Deceleration

4

–0,69

15-10

2

5

25

5

Deceleration, clutch disengaged

–0,92

10-0

3

28

K (1)

6

Idling

5

0

0

21

21

49

16 s PM + 5 s K (1)

7

Acceleration

6

0,74

0-32

12

12

61

According to manufacturer’s instructions

8

Steady speed

7

 

32

24

24

85

9

Deceleration

8

–0,75

32-10

8

11

93

10

Deceleration, clutch disengaged

–0,92

10-0

3

96

K (1)

11

Idling

9

0

0

21

21

117

16 s PM + 5 s K (1)

12

Acceleration

10

0,53

0-50

26

26

143

According to manufacturer’s instructions

13

Steady speed

11

0

50

12

12

155

14

Deceleration

12

–0,52

50-35

8

8

163

15

Steady speed

13

0

35

13

13

176

16

Deceleration

14

–0,68

35-10

9

 

185

17

Deceleration clutch disengaged

–0,92

10-0

3

188

K (1)

18

Idling

15

0

0

7

7

195

7 s PM (1)

  • 3. 
    ECE R40 test cycle tolerances

The test cycle tolerances indicated in Figure Ap 6-4 for one elementary urban cycle of the ECE R40 test cycle shall be respected in principle during the whole test cycle.

Figure Ap6-4

ECE R40-based test cycle tolerances

Image

  • 4. 
    Generic applicable ECE R40 and R47 test cycle tolerances
 

4.1.

A tolerance of 1 km/h over or under the theoretical speed shall be allowed during all phases of the test cycle. Speed tolerances greater than those prescribed shall be accepted during phase changes provided that the tolerances are not exceeded for more than 0,5 second on any occasion, without prejudice to the provisions of points 4.3. and 4.4. The time tolerance shall be + 0,5 sec.

 

4.2.

The distance driven during the cycle shall be measured to (0 / + 2) percent.

 

4.3.

If the acceleration capability of the L-category vehicle is not sufficient to carry out the acceleration phases within the prescribed limits of tolerances or the prescribed maximum vehicle speed in the individual cycles cannot be achieved owing to a lack of propulsion power, the vehicle shall be driven with the throttle fully open until the speed prescribed for the cycle is reached and the cycle shall be carried on normally.

 

4.4.

If the period of deceleration is shorter than that prescribed for the corresponding phase, the timing of the theoretical cycle shall be restored by a constant speed or idling period merging into the subsequent constant speed or idling operation. In such cases, point 4.1 shall not apply.

  • 5. 
    Sampling of the exhaust flow of the vehicle in the ECE R40 and R47 test cycles

5.1.   Check of back-pressure from sampling device

During the preliminary tests, a check shall be made to ensure that the back-pressure set up by the sampling device is equal to the atmospheric pressure to within ± 1 230 Pa.

5.2.   Sampling shall start as of t=0 just before cranking and starting-up of the combustion engine if that engine makes part of the propulsion type.

5.3.   The combustion engine shall be started up by means of the devices provided for that purpose — the choke, the starter valve, etc. — in accordance with the manufacturer’s instructions.

5.4.   The sampling bags shall be hermetically closed as soon as filling is completed.

5.5.   At the end of the test cycle, the system for collecting dilute exhaust mixture and dilution air shall be closed and the gases produced by the engine shall be released into the atmosphere.

  • 6. 
    Gearshift procedures
 

6.1.

The ECE R47 test shall be conducted using the gearshift procedure set out in point 2.3 of UNECE regulation No 47.

 

6.2.

The ECE R40 test shall be conducted using the gearshift procedure set out in point 2.3 of UNECE regulation No 40.

  • (3) 
    World Harmonised Motorcycle Test Cycle (WMTC), stage 2
  • 1. 
    Description of the test cycle

The WMTC stage 2 to be used on the chassis dynamometer shall be as depicted in the following graph:

Figure Ap6-5

WMTC stage 2

Image

1.1.   The WMTC stage 2 includes the same vehicle speed trace as WMTC stage 1 with supplemental gear shift prescriptions. The WMTC stage 2 lasts 1 800 seconds and consists of three parts to be carried out without interruption. The characteristic driving conditions (idling, acceleration, steady speed, deceleration, etc.). are set out in the following points and tables.

  • 2. 
    WMTC stage 2, cycle part 1

Figure Ap6-6

WMTC stage 2, part 1

Image

2.1   The WMTC stage 2 includes the same vehicle speed trace as WMTC stage 1 with supplemental gear shift prescriptions. The characteristic roller speed versus test time of WMTC stage 2, cycle part 1 is set out in the following tables.

 

2.2.1.

Table Ap6-3

WMTC stage 2, cycle part 1, reduced speed for vehicle classes 1 and 2-1, 0 to 180 s.

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

0

0,0

X

     

1

0,0

X

     

2

0,0

X

     

3

0,0

X

     

4

0,0

X

     

5

0,0

X

     

6

0,0

X

     

7

0,0

X

     

8

0,0

X

     

9

0,0

X

     

10

0,0

X

     

11

0,0

X

     

12

0,0

X

     

13

0,0

X

     

14

0,0

X

     

15

0,0

X

     

16

0,0

X

     

17

0,0

X

     

18

0,0

X

     

19

0,0

X

     

20

0,0

X

     

21

0,0

X

     

22

1,0

 

X

   

23

2,6

 

X

   

24

4,8

 

X

   

25

7,2

 

X

   

26

9,6

 

X

   

27

12,0

 

X

   

28

14,3

 

X

   

29

16,6

 

X

   

30

18,9

 

X

   

31

21,2

 

X

   

32

23,5

 

X

   

33

25,6

 

X

   

34

27,1

 

X

   

35

28,0

 

X

   

36

28,7

 

X

   

37

29,2

 

X

   

38

29,8

 

X

   

39

30,3

   

X

 

40

29,6

   

X

 

41

28,7

   

X

 

42

27,9

   

X

 

43

27,4

   

X

 

44

27,3

   

X

 

45

27,3

   

X

 

46

27,4

   

X

 

47

27,5

   

X

 

48

27,6

   

X

 

49

27,6

   

X

 

50

27,6

   

X

 

51

27,8

   

X

 

52

28,1

   

X

 

53

28,5

   

X

 

54

28,9

   

X

 

55

29,2

   

X

 

56

29,4

   

X

 

57

29,7

   

X

 

58

30,0

   

X

 

59

30,5

   

X

 

60

30,6

     

X

61

29,6

     

X

62

26,9

     

X

63

23,0

     

X

64

18,6

     

X

65

14,1

     

X

66

9,3

     

X

67

4,8

     

X

68

1,9

     

X

69

0,0

X

     

70

0,0

X

     

71

0,0

X

     

72

0,0

X

     

73

0,0

X

     

74

1,7

 

X

   

75

5,8

 

X

   

76

11,8

 

X

   

77

17,3

 

X

   

78

22,0

 

X

   

79

26,2

 

X

   

80

29,4

 

X

   

81

31,1

 

X

   

82

32,9

 

X

   

83

34,7

 

X

   

84

34,8

 

X

   

85

34,8

 

X

   

86

34,9

 

X

   

87

35,4

 

X

   

88

36,2

 

X

   

89

37,1

 

X

   

90

38,0

 

X

   

91

38,7

   

X

 

92

38,9

   

X

 

93

38,9

   

X

 

94

38,8

   

X

 

95

38,5

   

X

 

96

38,1

   

X

 

97

37,5

   

X

 

98

37,0

   

X

 

99

36,7

   

X

 

100

36,5

   

X

 

101

36,5

   

X

 

102

36,6

   

X

 

103

36,8

   

X

 

104

37,0

   

X

 

105

37,1

   

X

 

106

37,3

   

X

 

107

37,4

   

X

 

108

37,5

   

X

 

109

37,4

   

X

 

110

36,9

     

X

111

36,0

     

X

112

34,8

     

X

113

31,9

     

X

114

29,0

     

X

115

26,9

     

X

116

24,7

   

X

 

117

25,4

   

X

 

118

26,4

   

X

 

119

27,7

   

X

 

120

29,4

   

X

 
           

121

31,2

   

X

 

122

33,0

   

X

 

123

34,4

   

X

 

124

35,2

   

X

 

125

35,4

     

X

126

35,2

     

X

127

34,7

     

X

128

33,9

     

X

129

32,4

     

X

130

29,8

     

X

131

26,1

     

X

132

22,1

     

X

133

18,6

     

X

134

16,8

 

X

   

135

17,7

 

X

   

136

21,1

 

X

   

137

25,4

 

X

   

138

29,2

 

X

   

139

31,6

 

X

   

140

32,1

     

X

141

31,6

     

X

142

30,7

     

X

143

29,7

     

X

144

28,1

     

X

145

25,0

     

X

146

20,3

     

X

147

15,0

     

X

148

9,7

     

X

149

5,0

     

X

150

1,6

     

X

151

0,0

X

     

152

0,0

X

     

153

0,0

X

     

154

0,0

X

     

155

0,0

X

     

156

0,0

X

     

157

0,0

X

     

158

0,0

X

     

159

0,0

X

     

160

0,0

X

     

161

0,0

X

     

162

0,0

X

     

163

0,0

X

     

164

0,0

X

     

165

0,0

X

     

166

0,0

X

     

167

0,0

X

     

168

0,0

X

     

169

0,0

X

     

170

0,0

X

     

171

0,0

X

     

172

0,0

X

     

173

0,0

X

     

174

0,0

X

     

175

0,0

X

     

176

0,0

X

     

177

0,0

X

     

178

0,0

X

     

179

0,0

X

     

180

0,0

X

     
           
 

2.2.2.

Table Ap6-4

WMTC stage 2, cycle part 1, reduced speed for vehicle classes 1 and 2-1, 181 to 360 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

181

0,0

X

     

182

0,0

X

     

183

0,0

X

     

184

0,0

X

     

185

0,4

 

X

   

186

1,8

 

X

   

187

5,4

 

X

   

188

11,1

 

X

   

189

16,7

 

X

   

190

21,3

 

X

   

191

24,8

 

X

   

192

28,4

 

X

   

193

31,8

 

X

   

194

34,6

 

X

   

195

36,3

 

X

   

196

37,8

 

X

   

197

39,6

 

X

   

198

41,3

 

X

   

199

43,3

 

X

   

200

45,1

 

X

   

201

47,5

 

X

   

202

49,0

 

X

   

203

50,0

   

X

 

204

49,5

   

X

 

205

48,8

   

X

 

206

47,6

   

X

 

207

46,5

   

X

 

208

46,1

   

X

 

209

46,1

   

X

 

210

46,6

   

X

 

211

46,9

   

X

 

212

47,2

   

X

 

213

47,8

   

X

 

214

48,4

   

X

 

215

48,9

   

X

 

216

49,2

   

X

 

217

49,6

   

X

 

218

49,9

   

X

 

219

50,0

   

X

 

220

49,8

   

X

 

221

49,5

   

X

 

222

49,2

   

X

 

223

49,3

   

X

 

224

49,4

   

X

 

225

49,4

   

X

 

226

48,6

   

X

 

227

47,8

   

X

 

228

47,0

   

X

 

229

46,9

   

X

 

230

46,6

   

X

 

231

46,6

   

X

 

232

46,6

   

X

 

233

46,9

   

X

 

234

46,4

   

X

 

235

45,6

   

X

 

236

44,4

   

X

 

237

43,5

   

X

 

238

43,2

   

X

 

239

43,3

   

X

 

240

43,7

   

X

 

241

43,9

   

X

 

242

43,8

     

X

243

43,0

     

X

244

40,9

     

X

245

36,9

     

X

246

32,1

     

X

247

26,6

     

X

248

21,8

     

X

249

17,2

     

X

250

13,7

     

X

251

10,3

     

X

252

7,0

     

X

253

3,5

     

X

254

0,0

X

     

255

0,0

X

     

256

0,0

X

     

257

0,0

X

     

258

0,0

X

     

259

0,0

X

     

260

0,0

X

     

261

0,0

X

     

262

0,0

X

     

263

0,0

X

     

264

0,0

X

     

265

0,0

X

     

266

0,0

X

     

267

0,5

 

X

   

268

2,9

 

X

   

269

8,2

 

X

   

270

13,2

 

X

   

271

17,8

 

X

   

272

21,4

 

X

   

273

24,1

 

X

   

274

26,4

 

X

   

275

28,4

 

X

   

276

29,9

 

X

   

277

30,5

   

X

 

278

30,5

   

X

 

279

30,3

   

X

 

280

30,2

   

X

 

281

30,1

   

X

 

282

30,1

   

X

 

283

30,1

   

X

 

284

30,2

   

X

 

285

30,2

   

X

 

286

30,2

   

X

 

287

30,2

   

X

 

288

30,5

   

X

 

289

31,0

   

X

 

290

31,9

   

X

 

291

32,8

   

X

 

292

33,7

   

X

 

293

34,5

   

X

 

294

35,1

   

X

 

295

35,5

   

X

 

296

35,6

   

X

 

297

35,4

   

X

 

298

35,0

   

X

 

299

34,0

   

X

 

300

32,4

   

X

 

301

30,6

   

X

 

302

29,0

   

X

 

303

27,8

   

X

 

304

27,2

   

X

 

305

26,9

   

X

 

306

26,5

   

X

 

307

26,1

   

X

 

308

25,7

   

X

 

309

25,5

   

X

 

310

25,7

   

X

 

311

26,4

   

X

 

312

27,3

   

X

 

313

28,1

   

X

 

314

27,9

     

X

315

26,0

     

X

316

22,7

     

X

317

19,0

     

X

318

16,0

     

X

319

14,6

 

X

   

320

15,2

 

X

   

321

16,9

 

X

   

322

19,3

 

X

   

323

22,0

 

X

   

324

24,6

 

X

   

325

26,8

 

X

   

326

27,9

 

X

   

327

28,0

   

X

 

328

27,7

   

X

 

329

27,1

   

X

 

330

26,8

   

X

 

331

26,6

   

X

 

332

26,8

   

X

 

333

27,0

   

X

 

334

27,2

   

X

 

335

27,4

   

X

 

336

27,5

   

X

 

337

27,7

   

X

 

338

27,9

   

X

 

339

28,1

   

X

 

340

28,3

   

X

 

341

28,6

   

X

 

342

29,1

   

X

 

343

29,6

   

X

 

344

30,1

   

X

 

345

30,6

   

X

 

346

30,8

   

X

 

347

30,8

   

X

 

348

30,8

   

X

 

349

30,8

   

X

 

350

30,8

   

X

 

351

30,8

   

X

 

352

30,8

   

X

 

353

30,8

   

X

 

354

30,9

   

X

 

355

30,9

   

X

 

356

30,9

   

X

 

357

30,8

   

X

 

358

30,4

   

X

 

359

29,6

   

X

 

360

28,4

   

X

 
 

2.2.3.

Table Ap6-5

WMTC stage 2, cycle part 1, reduced speed for vehicle classes 1 and 2-1, 361 to 540 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

361

27,1

   

X

 

362

26,0

   

X

 

363

25,4

   

X

 

364

25,5

   

X

 

365

26,3

   

X

 

366

27,3

   

X

 

367

28,3

   

X

 

368

29,2

   

X

 

369

29,5

   

X

 

370

29,4

   

X

 

371

28,9

   

X

 

372

28,1

   

X

 

373

27,1

   

X

 

374

26,3

   

X

 

375

25,7

   

X

 

376

25,5

   

X

 

377

25,6

   

X

 

378

25,9

   

X

 

379

26,3

   

X

 

380

26,9

   

X

 

381

27,6

   

X

 

382

28,4

   

X

 

383

29,3

   

X

 

384

30,1

   

X

 

385

30,4

   

X

 

386

30,2

   

X

 

387

29,5

   

X

 

388

28,6

   

X

 

389

27,9

   

X

 

390

27,5

   

X

 

391

27,2

   

X

 

392

26,9

     

X

393

26,4

     

X

394

25,7

     

X

395

24,9

     

X

396

21,4

     

X

397

15,9

     

X

398

9,9

     

X

399

4,9

     

X

400

2,1

     

X

401

0,9

     

X

402

0,0

X

     

403

0,0

X

     

404

0,0

X

     

405

0,0

X

     

406

0,0

X

     

407

0,0

X

     

408

1,2

 

X

   

409

3,2

 

X

   

410

5,9

 

X

   

411

8,8

 

X

   

412

12,0

 

X

   

413

15,4

 

X

   

414

18,9

 

X

   

415

22,1

 

X

   

416

24,7

 

X

   

417

26,8

 

X

   

418

28,7

 

X

   

419

30,6

 

X

   

420

32,4

 

X

   

421

34,0

 

X

   

422

35,4

 

X

   

423

36,5

 

X

   

424

37,5

 

X

   

425

38,6

 

X

   

426

39,6

 

X

   

427

40,7

 

X

   

428

41,4

 

X

   

429

41,7

   

X

 

430

41,4

   

X

 

431

40,9

   

X

 

432

40,5

   

X

 

433

40,2

   

X

 

434

40,1

   

X

 

435

40,1

   

X

 

436

39,8

     

X

437

38,9

     

X

438

37,4

     

X

439

35,8

     

X

440

34,1

     

X

441

32,5

     

X

442

30,9

     

X

443

29,4

     

X

444

27,9

     

X

445

26,5

     

X

446

25,0

     

X

447

23,4

     

X

448

21,8

     

X

449

20,3

     

X

450

19,3

     

X

451

18,7

     

X

452

18,3

     

X

453

17,8

     

X

454

17,4

     

X

455

16,8

     

X

456

16,3

   

X

 

457

16,5

   

X

 

458

17,6

   

X

 

459

19,2

   

X

 

460

20,8

   

X

 

461

22,2

   

X

 

462

23,0

   

X

 

463

23,0

     

X

464

22,0

     

X

465

20,1

     

X

466

17,7

     

X

467

15,0

     

X

468

12,1

     

X

469

9,1

     

X

470

6,2

     

X

471

3,6

     

X

472

1,8

     

X

473

0,8

     

X

474

0,0

X

     

475

0,0

X

     

476

0,0

X

     

477

0,0

X

     

478

0,0

X

     

479

0,0

X

     

480

0,0

X

     

481

0,0

X

     

482

0,0

X

     

483

0,0

X

     

484

0,0

X

     

485

0,0

X

     

486

1,4

 

X

   

487

4,5

 

X

   

488

8,8

 

X

   

489

13,4

 

X

   

490

17,3

 

X

   

491

19,2

 

X

   

492

19,7

 

X

   

493

19,8

 

X

   

494

20,7

 

X

   

495

23,7

 

X

   

496

27,9

 

X

   

497

31,9

 

X

   

498

35,4

 

X

   

499

36,2

     

X

500

34,2

     

X

501

30,2

     

X

502

27,1

     

X

503

26,6

 

X

   

504

28,6

 

X

   

505

32,6

 

X

   

506

35,5

 

X

   

507

36,6

     

X

508

34,6

     

X

509

30,0

     

X

510

23,1

     

X

511

16,7

     

X

512

10,7

     

X

513

4,7

     

X

514

1,2

     

X

515

0,0

X

     

516

0,0

X

     

517

0,0

X

     

518

0,0

X

     

519

3,0

 

X

   

520

8,2

 

X

   

521

14,3

 

X

   

522

19,3

 

X

   

523

23,5

 

X

   

524

27,3

 

X

   

525

30,8

 

X

   

526

33,7

 

X

   

527

35,2

 

X

   

528

35,2

     

X

529

32,5

     

X

530

27,9

     

X

531

23,2

     

X

532

18,5

     

X

533

13,8

     

X

534

9,1

     

X

535

4,5

     

X

536

2,3

     

X

537

0,0

X

     

538

0,0

X

     

539

0,0

X

     

540

0,0

X

     
 

2.2.4.

Table Ap6-6

WMTC stage 2, cycle part 1, reduced speed for vehicle classes 1 and 2-1, 541 to 600 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

541

0,0

X

     

542

2,8

 

X

   

543

8,1

 

X

   

544

14,3

 

X

   

545

19,2

 

X

   

546

23,5

 

X

   

547

27,2

 

X

   

548

30,5

 

X

   

549

33,1

 

X

   

550

35,7

 

X

   

551

38,3

 

X

   

552

41,0

 

X

   

553

43,6

   

X

 

554

43,7

   

X

 

555

43,8

   

X

 

556

43,9

   

X

 

557

44,0

   

X

 

558

44,1

   

X

 

559

44,2

   

X

 

560

44,3

   

X

 

561

44,4

   

X

 

562

44,5

   

X

 

563

44,6

   

X

 

564

44,9

   

X

 

565

45,5

   

X

 

566

46,3

   

X

 

567

47,1

   

X

 

568

48,0

   

X

 

569

48,7

   

X

 

570

49,2

   

X

 

571

49,4

   

X

 

572

49,3

   

X

 

573

48,7

     

X

574

47,3

     

X

575

45,0

     

X

576

42,3

     

X

577

39,5

     

X

578

36,6

     

X

579

33,7

     

X

580

30,1

     

X

581

26,0

     

X

582

21,8

     

X

583

17,7

     

X

584

13,5

     

X

585

9,4

     

X

586

5,6

     

X

587

2,1

     

X

588

0,0

X

     

589

0,0

X

     

590

0,0

X

     

591

0,0

X

     

592

0,0

X

     

593

0,0

X

     

594

0,0

X

     

595

0,0

X

     

596

0,0

X

     

597

0,0

X

     

598

0,0

X

     

599

0,0

X

     

600

0,0

X

     
 

2.2.5.

Table Ap6-7

WMTC stage 2, cycle part 1 for vehicle classes 2-2 and 3, 0 to 180 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

0

0,0

X

     

1

0,0

X

     

2

0,0

X

     

3

0,0

X

     

4

0,0

X

     

5

0,0

X

     

6

0,0

X

     

7

0,0

X

     

8

0,0

X

     

9

0,0

X

     

10

0,0

X

     

11

0,0

X

     

12

0,0

X

     

13

0,0

X

     

14

0,0

X

     

15

0,0

X

     

16

0,0

X

     

17

0,0

X

     

18

0,0

X

     

19

0,0

X

     

20

0,0

X

     

21

0,0

X

     

22

1,0

 

X

   

23

2,6

 

X

   

24

4,8

 

X

   

25

7,2

 

X

   

26

9,6

 

X

   

27

12,0

 

X

   

28

14,3

 

X

   

29

16,6

 

X

   

30

18,9

 

X

   

31

21,2

 

X

   

32

23,5

 

X

   

33

25,6

 

X

   

34

27,1

 

X

   

35

28,0

 

X

   

36

28,7

 

X

   

37

29,2

 

X

   

38

29,8

 

X

   

39

30,4

   

X

 

40

29,6

   

X

 

41

28,7

   

X

 

42

27,9

   

X

 

43

27,5

   

X

 

44

27,3

   

X

 

45

27,4

   

X

 

46

27,5

   

X

 

47

27,6

   

X

 

48

27,6

   

X

 

49

27,6

   

X

 

50

27,7

   

X

 

51

27,8

   

X

 

52

28,1

   

X

 

53

28,6

   

X

 

54

29,0

   

X

 

55

29,2

   

X

 

56

29,5

   

X

 

57

29,7

   

X

 

58

30,1

   

X

 

59

30,5

   

X

 

60

30,7

   

X

 

61

29,7

     

X

62

27,0

     

X

63

23,0

     

X

64

18,7

     

X

65

14,2

     

X

66

9,4

     

X

67

4,9

     

X

68

2,0

     

X

69

0,0

X

     

70

0,0

X

     

71

0,0

X

     

72

0,0

X

     

73

0,0

X

     

74

1,7

 

X

   

75

5,8

 

X

   

76

11,8

 

X

   

77

18,3

 

X

   

78

24,5

 

X

   

79

29,4

 

X

   

80

32,5

 

X

   

81

34,2

 

X

   

82

34,4

 

X

   

83

34,5

 

X

   

84

34,6

 

X

   

85

34,7

 

X

   

86

34,8

 

X

   

87

35,2

 

X

   

88

36,0

 

X

   

89

37,0

 

X

   

90

37,9

 

X

   

91

38,6

 

X

   

92

38,8

   

X

 

93

38,8

   

X

 

94

38,7

   

X

 

95

38,5

   

X

 

96

38,0

   

X

 

97

37,4

   

X

 

98

36,9

   

X

 

99

36,6

   

X

 

100

36,4

   

X

 

101

36,4

   

X

 

102

36,5

   

X

 

103

36,7

   

X

 

104

36,9

   

X

 

105

37,0

   

X

 

106

37,2

   

X

 

107

37,3

   

X

 

108

37,4

   

X

 

109

37,3

   

X

 

110

36,8

   

X

 

111

35,8

     

X

112

34,7

     

X

113

31,8

     

X

114

28,9

     

X

115

26,7

     

X

116

24,6

   

X

 

117

25,2

   

X

 

118

26,2

   

X

 

119

27,6

   

X

 

120

29,2

   

X

 
           

121

31,0

   

X

 

122

32,8

   

X

 

123

34,3

   

X

 

124

35,1

   

X

 

125

35,3

     

X

126

35,1

     

X

127

34,6

     

X

128

33,7

     

X

129

32,2

     

X

130

29,6

     

X

131

26,0

     

X

132

22,0

     

X

133

18,5

     

X

134

16,6

 

X

   

135

17,6

 

X

   

136

21,0

 

X

   

137

25,2

 

X

   

138

29,1

 

X

   

139

31,4

 

X

   

140

31,9

     

X

141

31,4

     

X

142

30,6

     

X

143

29,5

     

X

144

28,0

     

X

145

24,9

     

X

146

20,2

     

X

147

14,8

     

X

148

9,5

     

X

149

4,8

     

X

150

1,4

     

X

151

0,0

X

     

152

0,0

X

     

153

0,0

X

     

154

0,0

X

     

155

0,0

X

     

156

0,0

X

     

157

0,0

X

     

158

0,0

X

     

159

0,0

X

     

160

0,0

X

     

161

0,0

X

     

162

0,0

X

     

163

0,0

X

     

164

0,0

X

     

165

0,0

X

     

166

0,0

X

     

167

0,0

X

     

168

0,0

X

     

169

0,0

X

     

170

0,0

X

     

171

0,0

X

     

172

0,0

X

     

173

0,0

X

     

174

0,0

X

     

175

0,0

X

     

176

0,0

X

     

177

0,0

X

     

178

0,0

X

     

179

0,0

X

     

180

0,0

X

     
           
 

2.2.6.

Table Ap6-8

WMTC stage 2, cycle part 1 for vehicle classes 2-2 and 3, 181 to 360 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

181

0,0

X

     

182

0,0

X

     

183

2,0

 

X

   

184

6,0

 

X

   

185

12,4

 

X

   

186

21,4

 

X

   

187

30,0

 

X

   

188

37,1

 

X

   

189

42,5

 

X

   

190

46,6

 

X

   

191

49,8

 

X

   

192

52,4

 

X

   

193

54,4

 

X

   

194

55,6

 

X

   

195

56,1

   

X

 

196

56,2

   

X

 

197

56,2

   

X

 

198

56,2

   

X

 

199

56,7

   

X

 

200

57,2

   

X

 

201

57,7

   

X

 

202

58,2

   

X

 

203

58,7

   

X

 

204

59,3

   

X

 

205

59,8

   

X

 

206

60,0

   

X

 

207

60,0

   

X

 

208

59,9

   

X

 

209

59,9

   

X

 

210

59,9

   

X

 

211

59,9

   

X

 

212

59,9

   

X

 

213

59,8

   

X

 

214

59,6

     

X

215

59,1

     

X

216

57,1

     

X

217

53,2

     

X

218

48,3

     

X

219

43,9

     

X

220

40,3

     

X

221

39,5

     

X

222

41,3

 

X

   

223

45,2

 

X

   

224

50,1

 

X

   

225

53,7

 

X

   

226

55,8

 

X

   

227

55,8

     

X

228

54,7

     

X

229

53,3

     

X

230

52,3

     

X

231

52,0

     

X

232

52,1

     

X

233

51,8

     

X

234

50,8

     

X

235

49,2

     

X

236

47,5

     

X

237

45,7

     

X

238

43,9

     

X

239

42,0

     

X

240

40,2

     

X

241

38,3

     

X

242

36,4

     

X

243

34,6

     

X

244

32,7

     

X

245

30,6

     

X

246

28,1

     

X

247

25,5

     

X

248

23,1

     

X

249

21,2

     

X

250

19,5

     

X

251

17,8

     

X

252

15,3

     

X

253

11,5

     

X

254

7,2

     

X

255

2,5

     

X

256

0,0

X

     

257

0,0

X

     

258

0,0

X

     

259

0,0

X

     

260

0,0

X

     

261

0,0

X

     

262

0,0

X

     

263

0,0

X

     

264

0,0

X

     

265

0,0

X

     

266

0,0

X

     

267

0,5

 

X

   

268

2,9

 

X

   

269

8,2

 

X

   

270

13,2

 

X

   

271

17,8

 

X

   

272

21,4

 

X

   

273

24,1

 

X

   

274

26,4

 

X

   

275

28,4

 

X

   

276

29,9

 

X

   

277

30,5

 

X

   

278

30,5

   

X

 

279

30,3

   

X

 

280

30,2

   

X

 

281

30,1

   

X

 

282

30,1

   

X

 

283

30,1

   

X

 

284

30,1

   

X

 

285

30,1

   

X

 

286

30,1

   

X

 

287

30,2

   

X

 

288

30,4

   

X

 

289

31,0

   

X

 

290

31,8

   

X

 

291

32,7

   

X

 

292

33,6

   

X

 

293

34,4

   

X

 

294

35,0

   

X

 

295

35,4

   

X

 

296

35,5

   

X

 

297

35,3

   

X

 

298

34,9

   

X

 

299

33,9

   

X

 

300

32,4

   

X

 

301

30,6

   

X

 

302

28,9

   

X

 

303

27,8

   

X

 

304

27,2

   

X

 

305

26,9

   

X

 

306

26,5

   

X

 

307

26,1

   

X

 

308

25,7

   

X

 

309

25,5

   

X

 

310

25,7

   

X

 

311

26,4

   

X

 

312

27,3

   

X

 

313

28,1

   

X

 

314

27,9

     

X

315

26,0

     

X

316

22,7

     

X

317

19,0

     

X

318

16,0

     

X

319

14,6

 

X

   

320

15,2

 

X

   

321

16,9

 

X

   

322

19,3

 

X

   

323

22,0

 

X

   

324

24,6

 

X

   

325

26,8

 

X

   

326

27,9

 

X

   

327

28,1

   

X

 

328

27,7

   

X

 

329

27,2

   

X

 

330

26,8

   

X

 

331

26,6

   

X

 

332

26,8

   

X

 

333

27,0

   

X

 

334

27,2

   

X

 

335

27,4

   

X

 

336

27,6

   

X

 

337

27,7

   

X

 

338

27,9

   

X

 

339

28,1

   

X

 

340

28,3

   

X

 

341

28,6

   

X

 

342

29,0

   

X

 

343

29,6

   

X

 

344

30,1

   

X

 

345

30,5

   

X

 

346

30,7

   

X

 

347

30,8

   

X

 

348

30,8

   

X

 

349

30,8

   

X

 

350

30,8

   

X

 

351

30,8

   

X

 

352

30,8

   

X

 

353

30,8

   

X

 

354

30,9

   

X

 

355

30,9

   

X

 

356

30,9

   

X

 

357

30,8

   

X

 

358

30,4

   

X

 

359

29,6

   

X

 

360

28,4

   

X

 
 

2.2.7.

Table Ap6-9

WMTC stage 2, cycle part 1 for vehicle classes 2-2 and 3, 361 to 540 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

361

27,1

   

X

 

362

26,0

   

X

 

363

25,4

   

X

 

364

25,5

   

X

 

365

26,3

   

X

 

366

27,3

   

X

 

367

28,4

   

X

 

368

29,2

   

X

 

369

29,5

   

X

 

370

29,5

   

X

 

371

29,0

   

X

 

372

28,1

   

X

 

373

27,2

   

X

 

374

26,3

   

X

 

375

25,7

   

X

 

376

25,5

   

X

 

377

25,6

   

X

 

378

26,0

   

X

 

379

26,4

   

X

 

380

27,0

   

X

 

381

27,7

   

X

 

382

28,5

   

X

 

383

29,4

   

X

 

384

30,2

   

X

 

385

30,5

   

X

 

386

30,3

   

X

 

387

29,5

   

X

 

388

28,7

   

X

 

389

27,9

   

X

 

390

27,5

   

X

 

391

27,3

   

X

 

392

27,0

     

X

393

26,5

     

X

394

25,8

     

X

395

25,0

     

X

396

21,5

     

X

397

16,0

     

X

398

10,0

     

X

399

5,0

     

X

400

2,2

     

X

401

1,0

     

X

402

0,0

X

     

403

0,0

X

     

404

0,0

X

     

405

0,0

X

     

406

0,0

X

     

407

0,0

X

     

408

1,2

 

X

   

409

3,2

 

X

   

410

5,9

 

X

   

411

8,8

 

X

   

412

12,0

 

X

   

413

15,4

 

X

   

414

18,9

 

X

   

415

22,1

 

X

   

416

24,8

 

X

   

417

26,8

 

X

   

418

28,7

 

X

   

419

30,6

 

X

   

420

32,4

 

X

   

421

34,0

 

X

   

422

35,4

 

X

   

423

36,5

 

X

   

424

37,5

 

X

   

425

38,6

 

X

   

426

39,7

 

X

   

427

40,7

 

X

   

428

41,5

 

X

   

429

41,7

   

X

 

430

41,5

   

X

 

431

41,0

   

X

 

432

40,6

   

X

 

433

40,3

   

X

 

434

40,2

   

X

 

435

40,1

   

X

 

436

39,8

     

X

437

38,9

     

X

438

37,5

     

X

439

35,8

     

X

440

34,2

     

X

441

32,5

     

X

442

30,9

     

X

443

29,4

     

X

444

28,0

     

X

445

26,5

     

X

446

25,0

     

X

447

23,5

     

X

448

21,9

     

X

449

20,4

     

X

450

19,4

     

X

451

18,8

     

X

452

18,4

     

X

453

18,0

     

X

454

17,5

     

X

455

16,9

     

X

456

16,4

   

X

 

457

16,6

   

X

 

458

17,7

   

X

 

459

19,4

   

X

 

460

20,9

   

X

 

461

22,3

   

X

 

462

23,2

   

X

 

463

23,2

     

X

464

22,2

     

X

465

20,3

     

X

466

17,9

     

X

467

15,2

     

X

468

12,3

     

X

469

9,3

     

X

470

6,4

     

X

471

3,8

     

X

472

2,0

     

X

473

0,9

     

X

474

0,0

X

     

475

0,0

X

     

476

0,0

X

     

477

0,0

X

     

478

0,0

X

     

479

0,0

X

     

480

0,0

X

     

481

0,0

X

     

482

0,0

X

     

483

0,0

X

     

484

0,0

X

     

485

0,0

X

     

486

1,4

 

X

   

487

4,5

 

X

   

488

8,8

 

X

   

489

13,4

 

X

   

490

17,3

 

X

   

491

19,2

 

X

   

492

19,7

 

X

   

493

19,8

 

X

   

494

20,7

 

X

   

495

23,6

 

X

   

496

28,1

 

X

   

497

32,8

 

X

   

498

36,3

 

X

   

499

37,1

     

X

500

35,1

     

X

501

31,1

     

X

502

28,0

     

X

503

27,5

 

X

   

504

29,5

 

X

   

505

34,0

 

X

   

506

37,0

 

X

   

507

38,0

     

X

508

36,1

     

X

509

31,5

     

X

510

24,5

     

X

511

17,5

     

X

512

10,5

     

X

513

4,5

     

X

514

1,0

     

X

515

0,0

X

     

516

0,0

X

     

517

0,0

X

     

518

0,0

X

     

519

2,9

 

X

   

520

8,0

 

X

   

521

16,0

 

X

   

522

24,0

 

X

   

523

32,0

 

X

   

524

38,8

 

X

   

525

43,1

 

X

   

526

46,0

 

X

   

527

47,5

     

X

528

47,5

     

X

529

44,8

     

X

530

40,1

     

X

531

33,8

     

X

532

27,2

     

X

533

20,0

     

X

534

12,8

     

X

535

7,0

     

X

536

2,2

     

X

537

0,0

X

     

538

0,0

X

     

539

0,0

X

     

540

0,0

X

     
 

2.2.8

Table Ap6-10

WMTC stage 2, cycle part 1 for vehicle classes 2-2 and 3, 541 to 600 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

541

0,0

X

     

542

2,7

 

X

   

543

8,0

 

X

   

544

16,0

 

X

   

545

24,0

 

X

   

546

32,0

 

X

   

547

37,2

 

X

   

548

40,4

 

X

   

549

43,1

 

X

   

550

44,6

 

X

   

551

45,2

   

X

 

552

45,3

   

X

 

553

45,4

   

X

 

554

45,5

   

X

 

555

45,6

   

X

 

556

45,7

   

X

 

557

45,8

   

X

 

558

45,9

   

X

 

559

46,0

   

X

 

560

46,1

   

X

 

561

46,2

   

X

 

562

46,3

   

X

 

563

46,4

   

X

 

564

46,7

   

X

 

565

47,2

   

X

 

566

48,0

   

X

 

567

48,9

   

X

 

568

49,8

   

X

 

569

50,5

   

X

 

570

51,0

   

X

 

571

51,1

   

X

 

572

51,0

   

X

 

573

50,4

     

X

574

49,0

     

X

575

46,7

     

X

576

44,0

     

X

577

41,1

     

X

578

38,3

     

X

579

35,4

     

X

580

31,8

     

X

581

27,3

     

X

582

22,4

     

X

583

17,7

     

X

584

13,4

     

X

585

9,3

     

X

586

5,5

     

X

587

2,0

     

X

588

0,0

X

     

589

0,0

X

     

590

0,0

X

     

591

0,0

X

     

592

0,0

X

     

593

0,0

X

     

594

0,0

X

     

595

0,0

X

     

596

0,0

X

     

597

0,0

X

     

598

0,0

X

     

599

0,0

X

     

600

0,0

X

     
  • 3. 
    WMTC stage 2, part 2

Figure Ap6-7

WMTC stage 2, part 2

Image

3.1.   The WMTC stage 2 includes the same vehicle speed trace as WMTC stage 1 with supplemental gear shift prescriptions. The characteristic roller speed versus test time of WMTC stage 2, part 2 is set out in the following tables.

 

3.1.1.

Table Ap6-11

WMTC stage 2, cycle part 2, reduced speed for vehicle class 2-1, 0 to 180 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

0

0,0

X

     

1

0,0

X

     

2

0,0

X

     

3

0,0

X

     

4

0,0

X

     

5

0,0

X

     

6

0,0

X

     

7

0,0

X

     

8

0,0

X

     

9

2,3

 

X

   

10

7,3

 

X

   

11

13,6

 

X

   

12

18,9

 

X

   

13

23,6

 

X

   

14

27,8

 

X

   

15

31,8

 

X

   

16

35,6

 

X

   

17

39,3

 

X

   

18

42,7

 

X

   

19

46,0

 

X

   

20

49,1

 

X

   

21

52,1

 

X

   

22

54,9

 

X

   

23

57,5

 

X

   

24

58,4

   

X

 

25

58,5

   

X

 

26

58,5

   

X

 

27

58,6

   

X

 

28

58,9

   

X

 

29

59,3

   

X

 

30

59,8

   

X

 

31

60,2

   

X

 

32

60,5

   

X

 

33

60,8

   

X

 

34

61,1

   

X

 

35

61,5

   

X

 

36

62,0

   

X

 

37

62,5

   

X

 

38

63,0

   

X

 

39

63,4

   

X

 

40

63,7

   

X

 

41

63,8

   

X

 

42

63,9

   

X

 

43

63,8

   

X

 

44

63,2

     

X

45

61,7

     

X

46

58,9

     

X

47

55,2

     

X

48

51,0

     

X

49

46,7

     

X

50

42,8

     

X

51

40,2

     

X

52

38,8

     

X

53

37,9

     

X

54

36,7

     

X

55

35,1

     

X

56

32,9

     

X

57

30,4

     

X

58

28,0

     

X

59

25,9

     

X

60

24,4

     

X

61

23,7

 

X

   

62

23,8

 

X

   

63

25,0

 

X

   

64

27,3

 

X

   

65

30,4

 

X

   

66

33,9

 

X

   

67

37,3

 

X

   

68

39,8

     

X

69

39,5

     

X

70

36,3

     

X

71

31,4

     

X

72

26,5

     

X

73

24,2

     

X

74

24,8

     

X

75

26,6

     

X

76

27,5

     

X

77

26,8

     

X

78

25,3

     

X

79

24,0

     

X

80

23,3

   

X

 

81

23,7

   

X

 

82

24,9

   

X

 

83

26,4

   

X

 

84

27,7

   

X

 

85

28,3

   

X

 

86

28,3

   

X

 

87

28,1

   

X

 

88

28,1

 

X

   

89

28,6

 

X

   

90

29,8

 

X

   

91

31,6

 

X

   

92

33,9

 

X

   

93

36,5

 

X

   

94

39,1

 

X

   

95

41,5

 

X

   

96

43,3

 

X

   

97

44,5

 

X

   

98

45,1

     

X

99

45,1

     

X

100

43,9

     

X

101

41,4

     

X

102

38,4

     

X

103

35,5

     

X

104

32,9

     

X

105

31,3

     

X

106

30,7

     

X

107

31,0

   

X

 

108

32,2

   

X

 

109

34,0

   

X

 

110

36,0

   

X

 

111

37,9

   

X

 

112

39,9

   

X

 

113

41,6

   

X

 

114

43,1

   

X

 

115

44,3

   

X

 

116

45,0

   

X

 

117

45,5

   

X

 

118

45,8

   

X

 

119

46,0

   

X

 

120

46,1

   

X

 
           

121

46,2

   

X

 

122

46,1

   

X

 

123

45,7

   

X

 

124

45,0

   

X

 

125

44,3

   

X

 

126

44,7

 

X

   

127

46,8

 

X

   

128

49,9

 

X

   

129

52,8

 

X

   

130

55,6

 

X

   

131

58,2

 

X

   

132

60,2

     

X

133

59,3

     

X

134

57,5

     

X

135

55,4

     

X

136

52,5

     

X

137

47,9

     

X

138

41,4

     

X

139

34,4

     

X

140

30,0

     

X

141

27,0

     

X

142

26,5

 

X

   

143

28,7

 

X

   

144

32,7

 

X

   

145

36,5

 

X

   

146

40,0

 

X

   

147

43,5

 

X

   

148

46,7

 

X

   

149

49,8

 

X

   

150

52,7

 

X

   

151

55,5

 

X

   

152

58,1

 

X

   

153

60,6

 

X

   

154

62,9

 

X

   

155

62,9

     

X

156

61,7

     

X

157

59,4

     

X

158

56,6

     

X

159

53,7

     

X

160

50,7

     

X

161

47,7

     

X

162

45,0

     

X

163

43,1

     

X

164

41,9

   

X

 

165

41,6

   

X

 

166

41,3

   

X

 

167

40,9

   

X

 

168

41,8

   

X

 

169

42,1

   

X

 

170

41,8

   

X

 

171

41,3

   

X

 

172

41,5

 

X

   

173

43,5

 

X

   

174

46,5

 

X

   

175

49,7

 

X

   

176

52,6

 

X

   

177

55,0

 

X

   

178

56,5

 

X

   

179

57,1

 

X

   

180

57,3

     

X

           
 

3.1.2.

Table Ap6-12

WMTC stage 2, cycle part 2, reduced speed for vehicle class 2-1, 181 to 360 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

181

57,0

     

X

182

56,3

     

X

183

55,2

     

X

184

53,9

     

X

185

52,6

     

X

186

51,4

     

X

187

50,1

 

X

   

188

51,5

 

X

   

189

53,1

 

X

   

190

54,8

 

X

   

191

56,6

 

X

   

192

58,5

 

X

   

193

60,6

 

X

   

194

62,8

 

X

   

195

64,9

 

X

   

196

67,0

 

X

   

197

69,1

 

X

   

198

70,9

 

X

   

199

72,2

 

X

   

200

72,8

     

X

201

72,8

     

X

202

71,9

     

X

203

70,5

     

X

204

68,8

     

X

205

67,1

     

X

206

65,4

     

X

207

63,9

     

X

208

62,8

     

X

209

61,8

     

X

210

61,0

     

X

211

60,4

     

X

212

60,0

 

X

   

213

60,2

 

X

   

214

61,4

 

X

   

215

63,3

 

X

   

216

65,5

 

X

   

217

67,4

 

X

   

218

68,5

 

X

   

219

68,7

     

X

220

68,1

     

X

221

67,3

     

X

222

66,5

     

X

223

65,9

     

X

224

65,5

     

X

225

64,9

     

X

226

64,1

     

X

227

63,0

     

X

228

62,1

     

X

229

61,6

 

X

   

230

61,7

 

X

   

231

62,3

 

X

   

232

63,5

 

X

   

233

65,3

 

X

   

234

67,3

 

X

   

235

69,2

 

X

   

236

71,1

 

X

   

237

73,0

 

X

   

238

74,8

 

X

   

239

75,7

 

X

   

240

76,7

 

X

   

241

77,5

 

X

   

242

78,1

   

X

 

243

78,6

   

X

 

244

79,0

   

X

 

245

79,4

   

X

 

246

79,7

   

X

 

247

80,1

   

X

 

248

80,7

   

X

 

249

80,8

   

X

 

250

81,0

   

X

 

251

81,2

   

X

 

252

81,6

   

X

 

253

81,9

   

X

 

254

82,1

   

X

 

255

82,1

   

X

 

256

82,3

   

X

 

257

82,4

   

X

 

258

82,4

   

X

 

259

82,3

   

X

 

260

82,3

   

X

 

261

82,2

   

X

 

262

82,2

   

X

 

263

82,1

   

X

 

264

82,1

   

X

 

265

82,0

   

X

 

266

82,0

   

X

 

267

81,9

   

X

 

268

81,9

   

X

 

269

81,9

   

X

 

270

81,9

   

X

 

271

81,9

   

X

 

272

82,0

   

X

 

273

82,0

   

X

 

274

82,1

   

X

 

275

82,2

   

X

 

276

82,3

   

X

 

277

82,4

   

X

 

278

82,5

   

X

 

279

82,5

   

X

 

280

82,5

   

X

 

281

82,5

   

X

 

282

82,4

   

X

 

283

82,4

   

X

 

284

82,4

   

X

 

285

82,5

   

X

 

286

82,5

   

X

 

287

82,5

   

X

 

288

82,4

   

X

 

289

82,3

   

X

 

290

81,6

   

X

 

291

81,3

   

X

 

292

80,3

   

X

 

293

79,9

   

X

 

294

79,2

   

X

 

295

79,2

   

X

 

296

78,4

     

X

297

75,7

     

X

298

73,2

     

X

299

71,1

     

X

300

69,5

     

X

301

68,3

     

X

302

67,3

     

X

303

66,1

     

X

304

63,9

     

X

305

60,2

     

X

306

54,9

     

X

307

48,1

     

X

308

40,9

     

X

309

36,0

     

X

310

33,9

     

X

311

33,9

 

X

   

312

36,5

 

X

   

313

40,1

 

X

   

314

43,5

 

X

   

315

46,8

 

X

   

316

49,8

 

X

   

317

52,8

 

X

   

318

53,9

 

X

   

319

53,9

 

X

   

320

53,7

 

X

   

321

53,7

 

X

   

322

54,3

 

X

   

323

55,4

 

X

   

324

56,8

 

X

   

325

58,1

 

X

   

326

58,9

     

X

327

58,2

     

X

328

55,8

     

X

329

52,6

     

X

330

49,2

     

X

331

47,6

 

X

   

332

48,4

 

X

   

333

51,4

 

X

   

334

54,2

 

X

   

335

56,9

 

X

   

336

59,4

 

X

   

337

61,8

 

X

   

338

64,1

 

X

   

339

66,2

 

X

   

340

68,2

 

X

   

341

70,2

 

X

   

342

72,0

 

X

   

343

73,7

 

X

   

344

74,4

 

X

   

345

75,1

 

X

   

346

75,8

 

X

   

347

76,5

 

X

   

348

77,2

 

X

   

349

77,8

 

X

   

350

78,5

 

X

   

351

79,2

 

X

   

352

80,0

 

X

   

353

81,0

   

X

 

354

81,2

   

X

 

355

81,8

   

X

 

356

82,2

   

X

 

357

82,2

   

X

 

358

82,4

   

X

 

359

82,5

   

X

 

360

82,5

   

X

 
 

3.1.3.

Table Ap6-13

WMTC stage 2, cycle part 2, reduced speed for vehicle class 2-1, 361 to 540 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

361

82,5

   

X

 

362

82,5

   

X

 

363

82,3

   

X

 

364

82,1

   

X

 

365

82,1

   

X

 

366

82,1

   

X

 

367

82,1

   

X

 

368

82,1

   

X

 

369

82,1

   

X

 

370

82,1

   

X

 

371

82,1

   

X

 

372

82,1

   

X

 

373

81,9

   

X

 

374

81,6

   

X

 

375

81,3

   

X

 

376

81,1

   

X

 

377

80,8

   

X

 

378

80,6

   

X

 

379

80,4

   

X

 

380

80,1

   

X

 

381

79,7

     

X

382

78,6

     

X

383

76,8

     

X

384

73,7

     

X

385

69,4

     

X

386

64,0

     

X

387

58,6

     

X

388

53,2

     

X

389

47,8

     

X

390

42,4

     

X

391

37,0

     

X

392

33,0

     

X

393

30,9

     

X

394

30,9

 

X

   

395

33,5

 

X

   

396

37,2

 

X

   

397

40,8

 

X

   

398

44,2

 

X

   

399

47,4

 

X

   

400

50,4

 

X

   

401

53,3

 

X

   

402

56,1

 

X

   

403

57,3

 

X

   

404

58,1

 

X

   

405

58,8

 

X

   

406

59,4

 

X

   

407

59,8

   

X

 

408

59,7

   

X

 

409

59,4

   

X

 

410

59,2

   

X

 

411

59,2

   

X

 

412

59,6

   

X

 

413

60,0

   

X

 

414

60,5

   

X

 

415

61,0

   

X

 

416

61,2

   

X

 

417

61,3

   

X

 

418

61,4

   

X

 

419

61,7

   

X

 

420

62,3

   

X

 

421

63,1

   

X

 

422

63,6

   

X

 

423

63,9

   

X

 

424

63,8

   

X

 

425

63,6

   

X

 

426

63,3

     

X

427

62,8

     

X

428

61,9

     

X

429

60,5

     

X

430

58,6

     

X

431

56,5

     

X

432

54,6

     

X

433

53,8

   

X

 

434

54,5

   

X

 

435

56,1

   

X

 

436

57,9

   

X

 

437

59,7

   

X

 

438

61,2

   

X

 

439

62,3

   

X

 

440

63,1

   

X

 

441

63,6

     

X

442

63,5

     

X

443

62,7

     

X

444

60,9

     

X

445

58,7

     

X

446

56,4

     

X

447

54,5

     

X

448

53,3

     

X

449

53,0

   

X

 

450

53,5

   

X

 

451

54,6

   

X

 

452

56,1

   

X

 

453

57,6

   

X

 

454

58,9

   

X

 

455

59,8

   

X

 

456

60,3

   

X

 

457

60,7

   

X

 

458

61,3

   

X

 

459

62,4

   

X

 

460

64,1

   

X

 

461

66,2

   

X

 

462

68,1

   

X

 

463

69,7

   

X

 

464

70,4

   

X

 

465

70,7

   

X

 

466

70,7

   

X

 

467

70,7

   

X

 

468

70,7

   

X

 

469

70,6

   

X

 

470

70,5

   

X

 

471

70,4

   

X

 

472

70,2

   

X

 

473

70,1

   

X

 

474

69,8

   

X

 

475

69,5

   

X

 

476

69,1

   

X

 

477

69,1

   

X

 

478

69,5

   

X

 

479

70,3

   

X

 

480

71,2

   

X

 

481

72,0

   

X

 

482

72,6

   

X

 

483

72,8

   

X

 

484

72,7

   

X

 

485

72,0

     

X

486

70,4

     

X

487

67,7

     

X

488

64,4

     

X

489

61,0

     

X

490

57,6

     

X

491

54,0

     

X

492

49,7

     

X

493

44,4

     

X

494

38,2

     

X

495

31,2

     

X

496

24,0

     

X

497

16,8

     

X

498

10,4

     

X

499

5,7

     

X

500

2,8

     

X

501

1,6

     

X

502

0,3

     

X

503

0,0

X

     

504

0,0

X

     

505

0,0

X

     

506

0,0

X

     

507

0,0

X

     

508

0,0

X

     

509

0,0

X

     

510

0,0

X

     

511

0,0

X

     

512

0,0

X

     

513

0,0

X

     

514

0,0

X

     

515

0,0

X

     

516

0,0

X

     

517

0,0

X

     

518

0,0

X

     

519

0,0

X

     

520

0,0

X

     

521

0,0

X

     

522

0,0

X

     

523

0,0

X

     

524

0,0

X

     

525

0,0

X

     

526

0,0

X

     

527

0,0

X

     

528

0,0

X

     

529

0,0

X

     

530

0,0

X

     

531

0,0

X

     

532

0,0

X

     

533

2,3

 

X

   

534

7,2

 

X

   

535

13,5

 

X

   

536

18,7

 

X

   

537

22,9

 

X

   

538

26,7

 

X

   

539

30,0

 

X

   

540

32,8

 

X

   
 

3.1.4.

Table Ap6-14

WMTC stage 2, cycle part 2, reduced speed for vehicle class 2-1, 541 to 600 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

541

35,2

 

X

   

542

37,3

 

X

   

543

39,1

 

X

   

544

40,8

 

X

   

545

41,8

 

X

   

546

42,5

 

X

   

547

43,3

 

X

   

548

44,1

 

X

   

549

45,0

 

X

   

550

45,7

 

X

   

551

46,2

   

X

 

552

46,3

   

X

 

553

46,1

   

X

 

554

45,6

   

X

 

555

44,9

   

X

 

556

44,4

   

X

 

557

44,0

   

X

 

558

44,0

   

X

 

559

44,3

   

X

 

560

44,8

   

X

 

561

45,3

   

X

 

562

45,9

   

X

 

563

46,5

   

X

 

564

46,8

   

X

 

565

47,1

   

X

 

566

47,1

   

X

 

567

47,0

   

X

 

568

46,7

   

X

 

569

46,3

   

X

 

570

45,9

   

X

 

571

45,6

   

X

 

572

45,4

   

X

 

573

45,2

   

X

 

574

45,1

   

X

 

575

44,8

     

X

576

43,5

     

X

577

40,9

     

X

578

38,2

     

X

579

35,6

     

X

580

33,0

     

X

581

30,4

     

X

582

27,7

     

X

583

25,1

     

X

584

22,5

     

X

585

19,8

     

X

586

17,2

     

X

587

14,6

     

X

588

12,0

     

X

589

9,3

     

X

590

6,7

     

X

591

4,1

     

X

592

1,5

     

X

593

0,0

X

     

594

0,0

X

     

595

0,0

X

     

596

0,0

X

     

597

0,0

X

     

598

0,0

X

     

599

0,0

X

     

600

0,0

X

     
 

3.1.5.

Table Ap6-15

WMTC stage 2, cycle part 2 for vehicle classes 2-2 and 3, 0 to 180 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

0

0,0

X

     

1

0,0

X

     

2

0,0

X

     

3

0,0

X

     

4

0,0

X

     

5

0,0

X

     

6

0,0

X

     

7

0,0

X

     

8

0,0

X

     

9

2,3

 

X

   

10

7,3

 

X

   

11

15,2

 

X

   

12

23,9

 

X

   

13

32,5

 

X

   

14

39,2

 

X

   

15

44,1

 

X

   

16

48,1

 

X

   

17

51,2

 

X

   

18

53,3

 

X

   

19

54,5

 

X

   

20

55,7

 

X

   

21

56,9

   

X

 

22

57,5

   

X

 

23

58,0

   

X

 

24

58,4

   

X

 

25

58,5

   

X

 

26

58,5

   

X

 

27

58,6

   

X

 

28

58,9

   

X

 

29

59,3

   

X

 

30

59,8

   

X

 

31

60,2

   

X

 

32

60,5

   

X

 

33

60,8

   

X

 

34

61,1

   

X

 

35

61,5

   

X

 

36

62,0

   

X

 

37

62,5

   

X

 

38

63,0

   

X

 

39

63,4

   

X

 

40

63,7

   

X

 

41

63,8

   

X

 

42

63,9

   

X

 

43

63,8

   

X

 

44

63,2

     

X

45

61,7

     

X

46

58,9

     

X

47

55,2

     

X

48

51,0

     

X

49

46,7

     

X

50

42,8

     

X

51

40,2

     

X

52

38,8

     

X

53

37,9

     

X

54

36,7

     

X

55

35,1

     

X

56

32,9

     

X

57

30,4

     

X

58

28,0

     

X

59

25,9

     

X

60

24,4

     

X

61

23,7

 

X

   

62

23,8

 

X

   

63

25,0

 

X

   

64

27,3

 

X

   

65

30,4

 

X

   

66

33,9

 

X

   

67

37,3

 

X

   

68

39,8

 

X

   

69

39,5

     

X

70

36,3

     

X

71

31,4

     

X

72

26,5

     

X

73

24,2

     

X

74

24,8

     

X

75

26,6

     

X

76

27,5

     

X

77

26,8

     

X

78

25,3

     

X

79

24,0

     

X

80

23,3

   

X

 

81

23,7

   

X

 

82

24,9

   

X

 

83

26,4

   

X

 

84

27,7

   

X

 

85

28,3

   

X

 

86

28,3

   

X

 

87

28,1

   

X

 

88

28,1

   

X

 

89

28,6

   

X

 

90

29,8

   

X

 

91

31,6

   

X

 

92

33,9

   

X

 

93

36,5

   

X

 

94

39,1

   

X

 

95

41,5

   

X

 

96

43,3

   

X

 

97

44,5

   

X

 

98

45,1

     

X

99

45,1

     

X

100

43,9

     

X

101

41,4

     

X

102

38,4

     

X

103

35,5

     

X

104

32,9

     

X

105

31,3

     

X

106

30,7

     

X

107

31,0

   

X

 

108

32,2

   

X

 

109

34,0

   

X

 

110

36,0

   

X

 

111

37,9

   

X

 

112

39,9

   

X

 

113

41,6

   

X

 

114

43,1

   

X

 

115

44,3

   

X

 

116

45,0

   

X

 

117

45,5

   

X

 

118

45,8

   

X

 

119

46,0

   

X

 

120

46,1

   

X

 
           

121

46,2

   

X

 

122

46,1

   

X

 

123

45,7

   

X

 

124

45,0

   

X

 

125

44,3

   

X

 

126

44,7

 

X

   

127

46,8

 

X

   

128

50,1

 

X

   

129

53,6

 

X

   

130

56,9

 

X

   

131

59,4

 

X

   

132

60,2

     

X

133

59,3

     

X

134

57,5

     

X

135

55,4

     

X

136

52,5

     

X

137

47,9

     

X

138

41,4

     

X

139

34,4

     

X

140

30,0

     

X

141

27,0

     

X

142

26,5

 

X

   

143

28,7

 

X

   

144

33,8

 

X

   

145

40,3

 

X

   

146

46,6

 

X

   

147

50,4

 

X

   

148

54,0

 

X

   

149

56,9

 

X

   

150

59,1

 

X

   

151

60,6

 

X

   

152

61,7

 

X

   

153

62,6

 

X

   

154

63,1

     

X

155

62,9

     

X

156

61,7

     

X

157

59,4

     

X

158

56,6

     

X

159

53,7

     

X

160

50,7

     

X

161

47,7

     

X

162

45,0

     

X

163

43,1

     

X

164

41,9

   

X

 

165

41,6

   

X

 

166

41,3

   

X

 

167

40,9

   

X

 

168

41,8

   

X

 

169

42,1

   

X

 

170

41,8

   

X

 

171

41,3

   

X

 

172

41,5

 

X

   

173

43,5

 

X

   

174

46,5

 

X

   

175

49,7

 

X

   

176

52,6

 

X

   

177

55,0

 

X

   

178

56,5

 

X

   

179

57,1

 

X

   

180

57,3

     

X

           
 

3.1.6.

Table Ap6-16

WMTC stage 2, cycle part 2 for vehicle classes 2-2 and 3, 181 to 360 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

181

57,0

     

X

182

56,3

     

X

183

55,2

     

X

184

53,9

     

X

185

52,6

     

X

186

51,4

     

X

187

50,1

 

X

   

188

51,5

 

X

   

189

53,1

 

X

   

190

54,8

 

X

   

191

56,6

 

X

   

192

58,5

 

X

   

193

60,6

 

X

   

194

62,8

 

X

   

195

64,9

 

X

   

196

67,0

 

X

   

197

69,1

 

X

   

198

70,9

 

X

   

199

72,2

 

X

   

200

72,8

     

X

201

72,8

     

X

202

71,9

     

X

203

70,5

     

X

204

68,8

     

X

205

67,1

     

X

206

65,4

     

X

207

63,9

     

X

208

62,8

     

X

209

61,8

     

X

210

61,0

     

X

211

60,4

     

X

212

60,0

     

X

213

60,2

   

X

 

214

61,4

   

X

 

215

63,3

   

X

 

216

65,5

   

X

 

217

67,4

   

X

 

218

68,5

   

X

 

219

68,7

     

X

220

68,1

     

X

221

67,3

     

X

222

66,5

     

X

223

65,9

     

X

224

65,5

     

X

225

64,9

     

X

226

64,1

     

X

227

63,0

     

X

228

62,1

     

X

229

61,6

 

X

   

230

61,7

 

X

   

231

62,3

 

X

   

232

63,5

 

X

   

233

65,3

 

X

   

234

67,3

 

X

   

235

69,3

 

X

   

236

71,4

 

X

   

237

73,5

 

X

   

238

75,6

 

X

   

239

77,7

 

X

   

240

79,7

 

X

   

241

81,5

 

X

   

242

83,1

 

X

   

243

84,6

 

X

   

244

86,0

 

X

   

245

87,4

 

X

   

246

88,7

 

X

   

247

89,6

 

X

   

248

90,2

 

X

   

249

90,7

 

X

   

250

91,2

 

X

   

251

91,8

 

X

   

252

92,4

 

X

   

253

93,0

 

X

   

254

93,6

 

X

   

255

94,1

   

X

 

256

94,3

   

X

 

257

94,4

   

X

 

258

94,4

   

X

 

259

94,3

   

X

 

260

94,3

   

X

 

261

94,2

   

X

 

262

94,2

   

X

 

263

94,2

   

X

 

264

94,1

   

X

 

265

94,0

   

X

 

266

94,0

   

X

 

267

93,9

   

X

 

268

93,9

   

X

 

269

93,9

   

X

 

270

93,9

   

X

 

271

93,9

   

X

 

272

94,0

   

X

 

273

94,0

   

X

 

274

94,1

   

X

 

275

94,2

   

X

 

276

94,3

   

X

 

277

94,4

   

X

 

278

94,5

   

X

 

279

94,5

   

X

 

280

94,5

   

X

 

281

94,5

   

X

 

282

94,4

   

X

 

283

94,5

   

X

 

284

94,6

   

X

 

285

94,7

   

X

 

286

94,8

   

X

 

287

94,9

   

X

 

288

94,8

   

X

 

289

94,3

     

X

290

93,3

     

X

291

91,8

     

X

292

89,6

     

X

293

87,0

     

X

294

84,1

     

X

295

81,2

     

X

296

78,4

     

X

297

75,7

     

X

298

73,2

     

X

299

71,1

     

X

300

69,5

     

X

301

68,3

     

X

302

67,3

     

X

303

66,1

     

X

304

63,9

     

X

305

60,2

     

X

306

54,9

     

X

307

48,1

     

X

308

40,9

     

X

309

36,0

     

X

310

33,9

     

X

311

33,9

 

X

   

312

36,5

 

X

   

313

41,0

 

X

   

314

45,3

 

X

   

315

49,2

 

X

   

316

51,5

 

X

   

317

53,2

 

X

   

318

53,9

 

X

   

319

53,9

 

X

   

320

53,7

 

X

   

321

53,7

 

X

   

322

54,3

 

X

   

323

55,4

 

X

   

324

56,8

 

X

   

325

58,1

 

X

   

326

58,9

     

X

327

58,2

     

X

328

55,8

     

X

329

52,6

     

X

330

49,2

     

X

331

47,6

 

X

   

332

48,4

 

X

   

333

51,8

 

X

   

334

55,7

 

X

   

335

59,6

 

X

   

336

63,0

 

X

   

337

65,9

 

X

   

338

68,1

 

X

   

339

69,8

 

X

   

340

71,1

 

X

   

341

72,1

 

X

   

342

72,9

 

X

   

343

73,7

 

X

   

344

74,4

 

X

   

345

75,1

 

X

   

346

75,8

 

X

   

347

76,5

 

X

   

348

77,2

 

X

   

349

77,8

 

X

   

350

78,5

 

X

   

351

79,2

 

X

   

352

80,0

 

X

   

353

81,0

 

X

   

354

82,0

 

X

   

355

83,0

 

X

   

356

83,7

 

X

   

357

84,2

   

X

 

358

84,4

   

X

 

359

84,5

   

X

 

360

84,4

   

X

 
 

3.1.7.

Table Ap6-17

WMTC stage 2, cycle part 2 for vehicle classes 2-2 and 3, 361 to 540 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

361

84,1

   

X

 

362

83,7

   

X

 

363

83,2

   

X

 

364

82,8

   

X

 

365

82,6

   

X

 

366

82,5

   

X

 

367

82,4

   

X

 

368

82,3

   

X

 

369

82,2

   

X

 

370

82,2

   

X

 

371

82,2

   

X

 

372

82,1

   

X

 

373

81,9

   

X

 

374

81,6

   

X

 

375

81,3

   

X

 

376

81,1

   

X

 

377

80,8

   

X

 

378

80,6

   

X

 

379

80,4

   

X

 

380

80,1

   

X

 

381

79,7

     

X

382

78,6

     

X

383

76,8

     

X

384

73,7

     

X

385

69,4

     

X

386

64,0

     

X

387

58,6

     

X

388

53,2

     

X

389

47,8

     

X

390

42,4

     

X

391

37,0

     

X

392

33,0

     

X

393

30,9

     

X

394

30,9

 

X

   

395

33,5

 

X

   

396

38,0

 

X

   

397

42,5

 

X

   

398

47,0

 

X

   

399

51,0

 

X

   

400

53,5

 

X

   

401

55,1

 

X

   

402

56,4

 

X

   

403

57,3

 

X

   

404

58,1

 

X

   

405

58,8

 

X

   

406

59,4

 

X

   

407

59,8

   

X

 

408

59,7

   

X

 

409

59,4

   

X

 

410

59,2

   

X

 

411

59,2

   

X

 

412

59,6

   

X

 

413

60,0

   

X

 

414

60,5

   

X

 

415

61,0

   

X

 

416

61,2

   

X

 

417

61,3

   

X

 

418

61,4

   

X

 

419

61,7

   

X

 

420

62,3

   

X

 

421

63,1

   

X

 

422

63,6

   

X

 

423

63,9

   

X

 

424

63,8

   

X

 

425

63,6

   

X

 

426

63,3

     

X

427

62,8

     

X

428

61,9

     

X

429

60,5

     

X

430

58,6

     

X

431

56,5

     

X

432

54,6

     

X

433

53,8

   

X

 

434

54,5

   

X

 

435

56,1

   

X

 

436

57,9

   

X

 

437

59,7

   

X

 

438

61,2

   

X

 

439

62,3

   

X

 

440

63,1

   

X

 

441

63,6

     

X

442

63,5

     

X

443

62,7

     

X

444

60,9

     

X

445

58,7

     

X

446

56,4

     

X

447

54,5

     

X

448

53,3

     

X

449

53,0

   

X

 

450

53,5

   

X

 

451

54,6

   

X

 

452

56,1

   

X

 

453

57,6

   

X

 

454

58,9

   

X

 

455

59,8

   

X

 

456

60,3

   

X

 

457

60,7

   

X

 

458

61,3

   

X

 

459

62,4

   

X

 

460

64,1

   

X

 

461

66,2

   

X

 

462

68,1

   

X

 

463

69,7

   

X

 

464

70,4

   

X

 

465

70,7

   

X

 

466

70,7

   

X

 

467

70,7

   

X

 

468

70,7

   

X

 

469

70,6

   

X

 

470

70,5

   

X

 

471

70,4

   

X

 

472

70,2

   

X

 

473

70,1

   

X

 

474

69,8

   

X

 

475

69,5

   

X

 

476

69,1

   

X

 

477

69,1

   

X

 

478

69,5

   

X

 

479

70,3

   

X

 

480

71,2

   

X

 

481

72,0

   

X

 

482

72,6

   

X

 

483

72,8

   

X

 

484

72,7

   

X

 

485

72,0

     

X

486

70,4

     

X

487

67,7

     

X

488

64,4

     

X

489

61,0

     

X

490

57,6

     

X

491

54,0

     

X

492

49,7

     

X

493

44,4

     

X

494

38,2

     

X

495

31,2

     

X

496

24,0

     

X

497

16,8

     

X

498

10,4

     

X

499

5,7

     

X

500

2,8

     

X

501

1,6

     

X

502

0,3

     

X

503

0,0

X

     

504

0,0

X

     

505

0,0

X

     

506

0,0

X

     

507

0,0

X

     

508

0,0

X

     

509

0,0

X

     

510

0,0

X

     

511

0,0

X

     

512

0,0

X

     

513

0,0

X

     

514

0,0

X

     

515

0,0

X

     

516

0,0

X

     

517

0,0

X

     

518

0,0

X

     

519

0,0

X

     

520

0,0

X

     

521

0,0

X

     

522

0,0

X

     

523

0,0

X

     

524

0,0

X

     

525

0,0

X

     

526

0,0

X

     

527

0,0

X

     

528

0,0

X

     

529

0,0

X

     

530

0,0

X

     

531

0,0

X

     

532

0,0

X

     

533

2,3

 

X

   

534

7,2

 

X

   

535

14,6

 

X

   

536

23,5

 

X

   

537

33,0

 

X

   

538

42,7

 

X

   

539

51,8

 

X

   

540

59,4

 

X

   
 

3.1.8.

Table Ap6-18

WMTC stage 2, cycle part 2 for vehicle classes 2-2 and 3, 541 to 600 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

541

65,3

 

X

   

542

69,6

 

X

   

543

72,3

 

X

   

544

73,9

 

X

   

545

75,0

 

X

   

546

75,7

 

X

   

547

76,5

 

X

   

548

77,3

 

X

   

549

78,2

 

X

   

550

78,9

 

X

   

551

79,4

   

X

 

552

79,6

   

X

 

553

79,3

   

X

 

554

78,8

   

X

 

555

78,1

   

X

 

556

77,5

   

X

 

557

77,2

   

X

 

558

77,2

   

X

 

559

77,5

   

X

 

560

77,9

   

X

 

561

78,5

   

X

 

562

79,1

   

X

 

563

79,6

   

X

 

564

80,0

   

X

 

565

80,2

   

X

 

566

80,3

   

X

 

567

80,1

   

X

 

568

79,8

   

X

 

569

79,5

   

X

 

570

79,1

   

X

 

571

78,8

   

X

 

572

78,6

   

X

 

573

78,4

   

X

 

574

78,3

   

X

 

575

78,0

     

X

576

76,7

     

X

577

73,7

     

X

578

69,5

     

X

579

64,8

     

X

580

60,3

     

X

581

56,2

     

X

582

52,5

     

X

583

49,0

     

X

584

45,2

     

X

585

40,8

     

X

586

35,4

     

X

587

29,4

     

X

588

23,4

     

X

589

17,7

     

X

590

12,6

     

X

591

8,0

     

X

592

4,1

     

X

593

1,3

     

X

594

0,0

X

     

595

0,0

X

     

596

0,0

X

     

597

0,0

X

     

598

0,0

X

     

599

0,0

X

     

600

0,0

X

     
  • 4. 
    WMTC stage 2, part 3

Figure Ap6-8

WMTC stage 2, part 3

Image

4.1   The WMTC stage 2 includes the same vehicle speed trace as WMTC stage 1 with supplemental gear shift prescriptions. The characteristic roller speed versus test time of WMTC stage 2, part 3 is set out in the following tables.

 

4.1.1.

Table Ap6-19

WMTC stage 2, cycle part 3, reduced speed for vehicle class 3-1, 1 to 180 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

0

0,0

X

     

1

0,0

X

     

2

0,0

X

     

3

0,0

X

     

4

0,0

X

     

5

0,0

X

     

6

0,0

X

     

7

0,0

X

     

8

0,9

 

X

   

9

3,2

 

X

   

10

7,3

 

X

   

11

12,4

 

X

   

12

17,9

 

X

   

13

23,5

 

X

   

14

29,1

 

X

   

15

34,3

 

X

   

16

38,6

 

X

   

17

41,6

 

X

   

18

43,9

 

X

   

19

45,9

 

X

   

20

48,1

 

X

   

21

50,3

 

X

   

22

52,6

 

X

   

23

54,8

 

X

   

24

55,8

 

X

   

25

55,2

 

X

   

26

53,9

 

X

   

27

52,7

 

X

   

28

52,8

 

X

   

29

55,0

 

X

   

30

58,5

 

X

   

31

62,3

 

X

   

32

65,7

 

X

   

33

68,1

 

X

   

34

69,1

 

X

   

35

69,5

 

X

   

36

69,9

 

X

   

37

70,6

 

X

   

38

71,3

 

X

   

39

72,2

 

X

   

40

72,8

 

X

   

41

73,2

 

X

   

42

73,4

 

X

   

43

73,8

 

X

   

44

74,8

 

X

   

45

76,7

 

X

   

46

79,1

 

X

   

47

81,1

 

X

   

48

82,1

     

X

49

81,7

     

X

50

80,3

     

X

51

78,8

     

X

52

77,3

     

X

53

75,9

     

X

54

75,0

     

X

55

74,7

     

X

56

74,7

     

X

57

74,7

     

X

58

74,6

     

X

59

74,4

     

X

60

74,1

     

X

61

73,9

     

X

62

74,1

 

X

   

63

75,1

 

X

   

64

76,8

 

X

   

65

78,7

 

X

   

66

80,4

 

X

   

67

81,7

 

X

   

68

82,6

 

X

   

69

83,5

 

X

   

70

84,4

 

X

   

71

85,1

 

X

   

72

85,7

 

X

   

73

86,3

 

X

   

74

87,0

 

X

   

75

87,9

 

X

   

76

88,8

 

X

   

77

89,7

 

X

   

78

90,3

   

X

 

79

90,6

   

X

 

80

90,6

   

X

 

81

90,5

   

X

 

82

90,4

   

X

 

83

90,1

   

X

 

84

89,7

   

X

 

85

89,3

   

X

 

86

89,0

   

X

 

87

88,8

   

X

 

88

88,9

   

X

 

89

89,1

   

X

 

90

89,3

   

X

 

91

89,4

   

X

 

92

89,4

   

X

 

93

89,2

   

X

 

94

88,9

   

X

 

95

88,5

   

X

 

96

88,0

   

X

 

97

87,5

   

X

 

98

87,2

   

X

 

99

87,1

   

X

 

100

87,2

   

X

 

101

87,3

   

X

 

102

87,4

   

X

 

103

87,5

   

X

 

104

87,4

   

X

 

105

87,1

   

X

 

106

86,8

   

X

 

107

86,4

   

X

 

108

85,9

   

X

 

109

85,2

     

X

110

84,0

     

X

111

82,2

     

X

112

80,3

     

X

113

78,6

     

X

114

77,2

     

X

115

75,9

     

X

116

73,8

     

X

117

70,4

     

X

118

65,7

     

X

119

60,5

     

X

120

55,9

     

X

           

121

53,0

     

X

122

51,6

     

X

123

50,9

     

X

124

50,5

     

X

125

50,2

     

X

126

50,3

 

X

   

127

50,6

 

X

   

128

51,2

 

X

   

129

51,8

 

X

   

130

52,5

 

X

   

131

53,4

 

X

   

132

54,9

 

X

   

133

57,0

 

X

   

134

59,4

 

X

   

135

61,9

 

X

   

136

64,3

 

X

   

137

66,4

 

X

   

138

68,1

 

X

   

139

69,6

 

X

   

140

70,7

 

X

   

141

71,4

 

X

   

142

71,8

 

X

   

143

72,8

 

X

   

144

75,0

 

X

   

145

77,8

 

X

   

146

80,7

 

X

   

147

83,3

 

X

   

148

75,4

 

X

   

149

87,3

 

X

   

150

89,1

 

X

   

151

90,6

 

X

   

152

91,9

 

X

   

153

93,2

 

X

   

154

94,6

 

X

   

155

96,0

 

X

   

156

97,5

 

X

   

157

99,0

 

X

   

158

99,8

     

X

159

99,0

     

X

160

96,7

     

X

161

93,7

     

X

162

91,3

     

X

163

90,4

     

X

164

90,6

     

X

165

91,1

     

X

166

90,9

     

X

167

89,0

     

X

168

85,6

     

X

169

81,6

     

X

170

77,6

     

X

171

73,6

     

X

172

69,7

     

X

173

66,0

     

X

174

62,7

     

X

175

60,0

     

X

176

58,0

     

X

177

56,4

     

X

178

54,8

     

X

179

53,3

     

X

180

51,7

     

X

           
 

4.1.2.

Table Ap6-20

WMTC stage 2, cycle part 3, reduced speed for vehicle class 3-1, 181 to 360 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

181

50,2

     

X

182

48,7

     

X

183

47,2

   

X

 

184

47,1

   

X

 

185

47,0

   

X

 

186

46,9

   

X

 

187

46,6

   

X

 

188

46,3

   

X

 

189

46,1

   

X

 

190

46,1

 

X

   

191

46,5

 

X

   

192

47,1

 

X

   

193

48,1

 

X

   

194

49,8

 

X

   

195

52,2

 

X

   

196

54,8

 

X

   

197

57,3

 

X

   

198

59,5

 

X

   

199

61,7

 

X

   

200

64,4

 

X

   

201

67,7

 

X

   

202

71,4

 

X

   

203

74,9

 

X

   

204

78,2

 

X

   

205

81,1

 

X

   

206

83,9

 

X

   

207

86,6

 

X

   

208

89,1

 

X

   

209

91,6

 

X

   

210

94,0

 

X

   

211

96,3

 

X

   

212

98,4

 

X

   

213

100,4

 

X

   

214

102,1

 

X

   

215

103,6

 

X

   

216

104,9

 

X

   

217

106,2

   

X

 

218

106,5

   

X

 

219

106,5

   

X

 

220

106,6

   

X

 

221

106,6

   

X

 

222

107,0

   

X

 

223

107,3

   

X

 

224

107,3

   

X

 

225

107,2

   

X

 

226

107,2

   

X

 

227

107,2

   

X

 

228

107,3

   

X

 

229

107,5

   

X

 

230

107,3

   

X

 

231

107,3

   

X

 

232

107,3

   

X

 

233

107,3

   

X

 

234

108,0

   

X

 

235

108,2

   

X

 

236

108,9

   

X

 

237

109,0

   

X

 

238

108,9

   

X

 

239

108,8

   

X

 

240

108,6

   

X

 

241

108,4

   

X

 

242

108,3

   

X

 

243

108,2

   

X

 

244

108,2

   

X

 

245

108,2

   

X

 

246

108,2

   

X

 

247

108,3

   

X

 

248

108,4

   

X

 

249

108,5

   

X

 

250

108,5

   

X

 

251

108,5

   

X

 

252

108,5

   

X

 

253

108,5

   

X

 

254

108,7

   

X

 

255

108,8

   

X

 

256

109,0

   

X

 

257

109,2

   

X

 

258

109,3

   

X

 

259

109,4

   

X

 

260

109,5

   

X

 

261

109,5

   

X

 

262

109,6

   

X

 

263

109,8

   

X

 

264

110,0

   

X

 

265

110,2

   

X

 

266

110,5

   

X

 

267

110,7

   

X

 

268

111,0

   

X

 

269

111,1

   

X

 

270

111,2

   

X

 

271

111,3

   

X

 

272

111,3

   

X

 

273

111,3

   

X

 

274

111,2

   

X

 

275

111,0

   

X

 

276

110,8

   

X

 

277

110,6

   

X

 

278

110,4

   

X

 

279

110,3

   

X

 

280

109,9

   

X

 

281

109,3

     

X

282

108,1

     

X

283

106,3

     

X

284

104,0

     

X

285

101,5

     

X

286

99,2

     

X

287

97,2

     

X

288

96,1

     

X

289

95,7

   

X

 

290

95,8

   

X

 

291

96,1

   

X

 

292

96,4

   

X

 

293

96,7

   

X

 

294

96,9

   

X

 

295

96,9

   

X

 

296

96,8

   

X

 

297

96,7

   

X

 

298

96,4

   

X

 

299

96,1

   

X

 

300

95,9

   

X

 

301

95,8

   

X

 

302

95,9

   

X

 

303

96,2

   

X

 

304

96,4

   

X

 

305

96,7

   

X

 

306

96,7

   

X

 

307

96,3

   

X

 

308

95,3

     

X

309

94,0

     

X

310

92,5

     

X

311

91,4

     

X

312

90,9

     

X

313

90,7

     

X

314

90,3

     

X

315

89,6

     

X

316

88,6

     

X

317

87,7

     

X

318

86,8

     

X

319

86,2

     

X

320

85,8

     

X

321

85,7

     

X

322

85,7

     

X

323

86,0

   

X

 

324

86,7

   

X

 

325

87,8

   

X

 

326

89,2

   

X

 

327

90,9

   

X

 

328

92,6

   

X

 

329

94,3

   

X

 

330

95,9

   

X

 

331

97,4

   

X

 

332

98,7

   

X

 

333

99,7

   

X

 

334

100,3

   

X

 

335

100,6

   

X

 

336

101,0

   

X

 

337

101,4

   

X

 

338

101,8

   

X

 

339

102,2

   

X

 

340

102,5

   

X

 

341

102,6

   

X

 

342

102,7

   

X

 

343

102,8

   

X

 

344

103,0

   

X

 

345

103,5

   

X

 

346

104,3

   

X

 

347

105,2

   

X

 

348

106,1

   

X

 

349

106,8

   

X

 

350

107,1

     

X

351

106,7

     

X

352

105,0

     

X

353

102,3

     

X

354

99,1

     

X

355

96,3

     

X

356

95,0

     

X

357

95,4

     

X

358

96,4

     

X

359

97,3

     

X

360

97,5

     

X

 

4.1.3.

Table Ap6-21

WMTC stage 2, cycle part 3, reduced speed for vehicle class 3-1, 361 to 540 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

361

96,1

     

X

362

93,4

     

X

363

90,4

     

X

364

87,8

     

X

365

86,0

     

X

366

85,1

     

X

367

84,7

     

X

368

84,2

   

X

 

369

85,0

   

X

 

370

86,5

   

X

 

371

88,3

   

X

 

372

89,9

   

X

 

373

91,0

   

X

 

374

91,8

   

X

 

375

92,5

   

X

 

376

93,1

   

X

 

377

93,7

   

X

 

378

94,4

   

X

 

379

95,0

   

X

 

380

95,6

   

X

 

381

96,3

   

X

 

382

96,9

   

X

 

383

97,5

   

X

 

384

98,0

   

X

 

385

98,3

   

X

 

386

98,6

   

X

 

387

98,9

   

X

 

388

99,1

   

X

 

389

99,3

   

X

 

390

99,3

   

X

 

391

99,2

   

X

 

392

99,2

   

X

 

393

99,3

   

X

 

394

99,5

   

X

 

395

99,9

   

X

 

396

100,3

   

X

 

397

100,6

   

X

 

398

100,9

   

X

 

399

101,1

   

X

 

400

101,3

   

X

 

401

101,4

   

X

 

402

101,5

   

X

 

403

101,6

   

X

 

404

101,8

   

X

 

405

101,9

   

X

 

406

102,0

   

X

 

407

102,0

   

X

 

408

102,0

   

X

 

409

102,0

   

X

 

410

101,9

   

X

 

411

101,9

   

X

 

412

101,9

   

X

 

413

101,8

   

X

 

414

101,8

   

X

 

415

101,8

   

X

 

416

101,8

   

X

 

417

101,8

   

X

 

418

101,8

   

X

 

419

101,9

   

X

 

420

102,0

   

X

 

421

102,2

   

X

 

422

102,4

   

X

 

423

102,6

   

X

 

424

102,8

   

X

 

425

103,1

   

X

 

426

103,4

   

X

 

427

103,9

   

X

 

428

104,4

   

X

 

429

104,9

   

X

 

430

105,2

   

X

 

431

105,5

   

X

 

432

105,7

   

X

 

433

105,9

   

X

 

434

106,1

   

X

 

435

106,3

   

X

 

436

106,5

   

X

 

437

106,8

   

X

 

438

107,1

   

X

 

439

107,5

   

X

 

440

108,0

   

X

 

441

108,3

   

X

 

442

108,6

   

X

 

443

108,9

   

X

 

444

109,1

   

X

 

445

109,2

   

X

 

446

109,4

   

X

 

447

109,5

   

X

 

448

109,7

   

X

 

449

109,9

   

X

 

450

110,2

   

X

 

451

110,5

   

X

 

452

110,8

   

X

 

453

111,0

   

X

 

454

111,2

   

X

 

455

111,3

   

X

 

456

111,1

   

X

 

457

110,4

   

X

 

458

109,3

   

X

 

459

108,1

   

X

 

460

106,8

   

X

 

461

105,5

   

X

 

462

104,4

   

X

 

463

103,8

   

X

 

464

103,6

   

X

 

465

103,5

   

X

 

466

103,5

   

X

 

467

103,4

   

X

 

468

103,3

   

X

 

469

103,1

   

X

 

470

102,9

   

X

 

471

102,6

   

X

 

472

102,5

   

X

 

473

102,4

   

X

 

474

102,4

   

X

 

475

102,5

   

X

 

476

102,7

   

X

 

477

103,0

   

X

 

478

103,3

   

X

 

479

103,7

   

X

 

480

104,1

   

X

 

481

104,5

   

X

 

482

104,8

   

X

 

483

104,9

   

X

 

484

105,1

   

X

 

485

105,1

   

X

 

486

105,2

   

X

 

487

105,2

   

X

 

488

105,2

   

X

 

489

105,3

   

X

 

490

105,3

   

X

 

491

105,4

   

X

 

492

105,5

   

X

 

493

105,5

   

X

 

494

105,3

   

X

 

495

105,1

   

X

 

496

104,7

   

X

 

497

104,2

   

X

 

498

103,9

   

X

 

499

103,6

   

X

 

500

103,5

   

X

 

501

103,5

   

X

 

502

103,4

   

X

 

503

103,3

   

X

 

504

103,0

   

X

 

505

102,7

   

X

 

506

102,4

   

X

 

507

102,1

   

X

 

508

101,9

   

X

 

509

101,7

   

X

 

510

101,5

   

X

 

511

101,3

   

X

 

512

101,2

   

X

 

513

101,0

   

X

 

514

100,9

   

X

 

515

100,9

   

X

 

516

101,0

   

X

 

517

101,2

   

X

 

518

101,3

   

X

 

519

101,4

   

X

 

520

101,4

   

X

 

521

101,2

   

X

 

522

100,8

   

X

 

523

100,4

   

X

 

524

99,9

   

X

 

525

99,6

   

X

 

526

99,5

   

X

 

527

99,5

   

X

 

528

99,6

   

X

 

529

99,7

   

X

 

530

99,8

   

X

 

531

99,9

   

X

 

532

100,0

   

X

 

533

100,0

   

X

 

534

100,1

   

X

 

535

100,2

   

X

 

536

100,4

   

X

 

537

100,5

   

X

 

538

100,6

   

X

 

539

100,7

   

X

 

540

100,8

   

X

 
 

4.1.4.

Table Ap6-22

WMTC stage 2, cycle part 3, reduced speed for vehicle class 3-1, 541 to 600 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

541

101,0

   

X

 

542

101,3

   

X

 

543

102,0

   

X

 

544

102,7

   

X

 

545

103,5

   

X

 

546

104,2

   

X

 

547

104,6

   

X

 

548

104,7

   

X

 

549

104,8

   

X

 

550

104,8

   

X

 

551

104,9

   

X

 

552

105,1

   

X

 

553

105,4

   

X

 

554

105,7

   

X

 

555

105,9

   

X

 

556

106,0

   

X

 

557

105,7

     

X

558

105,4

     

X

559

103,9

     

X

560

102,2

     

X

561

100,5

     

X

562

99,2

     

X

563

98,0

     

X

564

96,4

     

X

565

94,8

     

X

566

92,8

     

X

567

88,9

     

X

568

84,9

     

X

569

80,6

     

X

570

76,3

     

X

571

72,3

     

X

572

68,7

     

X

573

65,5

     

X

574

63,0

     

X

575

61,2

     

X

576

60,5

     

X

577

60,0

     

X

578

59,7

     

X

579

59,4

     

X

580

59,4

     

X

581

58,0

     

X

582

55,0

     

X

583

51,0

     

X

584

46,0

     

X

585

38,8

     

X

586

31,6

     

X

587

24,4

     

X

588

17,2

     

X

589

10,0

     

X

590

5,0

     

X

591

2,0

     

X

592

0,0

X

     

593

0,0

X

     

594

0,0

X

     

595

0,0

X

     

596

0,0

X

     

597

0,0

X

     

598

0,0

X

     

599

0,0

X

     

600

0,0

X

     
 

4.1.5.

Table Ap6-23

WMTC stage 2, cycle part 3 for vehicle class 3-2, 0 to 180 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

0

0,0

X

     

1

0,0

X

     

2

0,0

X

     

3

0,0

X

     

4

0,0

X

     

5

0,0

X

     

6

0,0

X

     

7

0,0

X

     

8

0,9

 

X

   

9

3,2

 

X

   

10

7,3

 

X

   

11

12,4

 

X

   

12

17,9

 

X

   

13

23,5

 

X

   

14

29,1

 

X

   

15

34,3

 

X

   

16

38,6

 

X

   

17

41,6

 

X

   

18

43,9

 

X

   

19

45,9

 

X

   

20

48,1

 

X

   

21

50,3

 

X

   

22

52,6

 

X

   

23

54,8

 

X

   

24

55,8

 

X

   

25

55,2

 

X

   

26

53,9

 

X

   

27

52,7

 

X

   

28

52,8

 

X

   

29

55,0

 

X

   

30

58,5

 

X

   

31

62,3

 

X

   

32

65,7

 

X

   

33

68,1

 

X

   

34

69,1

 

X

   

35

69,5

 

X

   

36

69,9

 

X

   

37

70,6

 

X

   

38

71,3

 

X

   

39

72,2

 

X

   

40

72,8

 

X

   

41

73,2

 

X

   

42

73,4

 

X

   

43

73,8

 

X

   

44

74,8

 

X

   

45

76,7

 

X

   

46

79,1

 

X

   

47

81,1

 

X

   

48

82,1

     

X

49

81,7

     

X

50

80,3

     

X

51

78,8

     

X

52

77,3

     

X

53

75,9

     

X

54

75,0

     

X

55

74,7

     

X

56

74,7

     

X

57

74,7

     

X

58

74,6

     

X

59

74,4

     

X

60

74,1

     

X

61

73,9

     

X

62

74,1

 

X

   

63

75,1

 

X

   

64

76,8

 

X

   

65

78,7

 

X

   

66

80,4

 

X

   

67

81,7

 

X

   

68

82,6

 

X

   

69

83,5

 

X

   

70

84,4

 

X

   

71

85,1

 

X

   

72

85,7

 

X

   

73

86,3

 

X

   

74

87,0

 

X

   

75

87,9

 

X

   

76

88,8

 

X

   

77

89,7

 

X

   

78

90,3

   

X

 

79

90,6

   

X

 

80

90,6

   

X

 

81

90,5

   

X

 

82

90,4

   

X

 

83

90,1

   

X

 

84

89,7

   

X

 

85

89,3

   

X

 

86

89,0

   

X

 

87

88,8

   

X

 

88

88,9

   

X

 

89

89,1

   

X

 

90

89,3

   

X

 

91

89,4

   

X

 

92

89,4

   

X

 

93

89,2

   

X

 

94

88,9

   

X

 

95

88,5

   

X

 

96

88,0

   

X

 

97

87,5

   

X

 

98

87,2

   

X

 

99

87,1

   

X

 

100

87,2

   

X

 

101

87,3

   

X

 

102

87,4

   

X

 

103

87,5

   

X

 

104

87,4

   

X

 

105

87,1

   

X

 

106

86,8

   

X

 

107

86,4

   

X

 

108

85,9

   

X

 

109

85,2

     

X

110

84,0

     

X

111

82,2

     

X

112

80,3

     

X

113

78,6

     

X

114

77,2

     

X

115

75,9

     

X

116

73,8

     

X

117

70,4

     

X

118

65,7

     

X

119

60,5

     

X

120

55,9

     

X

           

121

53,0

     

X

122

51,6

     

X

123

50,9

     

X

124

50,5

     

X

125

50,2

     

X

126

50,3

 

X

   

127

50,6

 

X

   

128

51,2

 

X

   

129

51,8

 

X

   

130

52,5

 

X

   

131

53,4

 

X

   

132

54,9

 

X

   

133

57,0

 

X

   

134

59,4

 

X

   

135

61,9

 

X

   

136

64,3

 

X

   

137

66,4

 

X

   

138

68,1

 

X

   

139

69,6

 

X

   

140

70,7

 

X

   

141

71,4

 

X

   

142

71,8

 

X

   

143

72,8

 

X

   

144

75,0

 

X

   

145

77,8

 

X

   

146

80,7

 

X

   

147

83,3

 

X

   

148

85,4

 

X

   

149

87,3

 

X

   

150

89,1

 

X

   

151

90,6

 

X

   

152

91,9

 

X

   

153

93,2

 

X

   

154

94,6

 

X

   

155

96,0

 

X

   

156

97,5

 

X

   

157

99,0

 

X

   

158

99,8

     

X

159

99,0

     

X

160

96,7

     

X

161

93,7

     

X

162

91,3

     

X

163

90,4

     

X

164

90,6

     

X

165

91,1

     

X

166

90,9

     

X

167

89,0

     

X

168

85,6

     

X

169

81,6

     

X

170

77,6

     

X

171

73,6

     

X

172

69,7

     

X

173

66,0

     

X

174

62,7

     

X

175

60,0

     

X

176

58,0

     

X

177

56,4

     

X

178

54,8

     

X

179

53,3

     

X

180

51,7

     

X

           
 

4.1.6.

Table Ap6-24

WMTC stage 2, cycle part 3 for vehicle class 3-2, 181 to 360 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

181

50,2

     

X

182

48,7

     

X

183

47,2

   

X

 

184

47,1

   

X

 

185

47,0

   

X

 

186

46,9

   

X

 

187

46,6

   

X

 

188

46,3

   

X

 

189

46,1

   

X

 

190

46,1

 

X

   

191

46,5

 

X

   

192

47,1

 

X

   

193

48,1

 

X

   

194

49,8

 

X

   

195

52,2

 

X

   

196

54,8

 

X

   

197

57,3

 

X

   

198

59,5

 

X

   

199

61,7

 

X

   

200

64,4

 

X

   

201

67,7

 

X

   

202

71,4

 

X

   

203

74,9

 

X

   

204

78,2

 

X

   

205

81,1

 

X

   

206

83,9

 

X

   

207

86,6

 

X

   

208

89,1

 

X

   

209

91,6

 

X

   

210

94,0

 

X

   

211

96,3

 

X

   

212

98,4

 

X

   

213

100,4

 

X

   

214

102,1

 

X

   

215

103,6

 

X

   

216

104,9

 

X

   

217

106,2

 

X

   

218

107,5

 

X

   

219

108,5

 

X

   

220

109,3

 

X

   

221

109,9

 

X

   

222

110,5

 

X

   

223

110,9

 

X

   

224

111,2

 

X

   

225

111,4

 

X

   

226

111,7

 

X

   

227

111,9

 

X

   

228

112,3

 

X

   

229

113,0

 

X

   

230

114,1

 

X

   

231

115,7

 

X

   

232

117,5

 

X

   

233

119,3

 

X

   

234

121,0

 

X

   

235

122,2

   

X

 

236

122,9

   

X

 

237

123,0

   

X

 

238

122,9

   

X

 

239

122,8

   

X

 

240

122,6

   

X

 

241

122,4

   

X

 

242

122,3

   

X

 

243

122,2

   

X

 

244

122,2

   

X

 

245

122,2

   

X

 

246

122,2

   

X

 

247

122,3

   

X

 

248

122,4

   

X

 

249

122,5

   

X

 

250

122,5

   

X

 

251

122,5

   

X

 

252

122,5

   

X

 

253

122,5

   

X

 

254

122,7

   

X

 

255

122,8

   

X

 

256

123,0

   

X

 

257

123,2

   

X

 

258

123,3

   

X

 

259

123,4

   

X

 

260

123,5

   

X

 

261

123,5

   

X

 

262

123,6

   

X

 

263

123,8

   

X

 

264

124,0

   

X

 

265

124,2

   

X

 

266

124,5

   

X

 

267

124,7

   

X

 

268

125,0

   

X

 

269

125,1

   

X

 

270

125,2

   

X

 

271

125,3

   

X

 

272

125,3

   

X

 

273

125,3

   

X

 

274

125,2

   

X

 

275

125,0

   

X

 

276

124,8

   

X

 

277

124,6

   

X

 

278

124,4

   

X

 

279

124,3

   

X

 

280

123,9

   

X

 

281

123,3

     

X

282

122,1

     

X

283

120,3

     

X

284

118,0

     

X

285

115,5

     

X

286

113,2

     

X

287

111,2

     

X

288

110,1

     

X

289

109,7

   

X

 

290

109,8

   

X

 

291

110,1

   

X

 

292

110,4

   

X

 

293

110,7

   

X

 

294

110,9

   

X

 

295

110,9

   

X

 

296

110,8

   

X

 

297

110,7

   

X

 

298

110,4

   

X

 

299

110,1

   

X

 

300

109,9

   

X

 

301

109,8

   

X

 

302

109,9

   

X

 

303

110,2

   

X

 

304

110,4

   

X

 

305

110,7

   

X

 

306

110,7

   

X

 

307

110,3

   

X

 

308

109,3

     

X

309

108,0

     

X

310

106,5

     

X

311

105,4

     

X

312

104,9

     

X

313

104,7

     

X

314

104,3

     

X

315

103,6

     

X

316

102,6

     

X

317

101,7

     

X

318

100,8

     

X

319

100,2

     

X

320

99,8

     

X

321

99,7

     

X

322

99,7

     

X

323

100,0

   

X

 

324

100,7

   

X

 

325

101,8

   

X

 

326

103,2

   

X

 

327

104,9

   

X

 

328

106,6

   

X

 

329

108,3

   

X

 

330

109,9

   

X

 

331

111,4

   

X

 

332

112,7

   

X

 

333

113,7

   

X

 

334

114,3

   

X

 

335

114,6

   

X

 

336

115,0

   

X

 

337

115,4

   

X

 

338

115,8

   

X

 

339

116,2

   

X

 

340

116,5

   

X

 

341

116,6

   

X

 

342

116,7

   

X

 

343

116,8

   

X

 

344

117,0

   

X

 

345

117,5

   

X

 

346

118,3

   

X

 

347

119,2

   

X

 

348

120,1

   

X

 

349

120,8

   

X

 

350

121,1

     

X

351

120,7

     

X

352

119,0

     

X

353

116,3

     

X

354

113,1

     

X

355

110,3

     

X

356

109,0

     

X

357

109,4

     

X

358

110,4

     

X

359

111,3

     

X

360

111,5

     

X

 

4.1.7.

Table Ap6-25

WMTC stage 2, cycle part 3 for vehicle class 3-2, 361 to 540 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

361

110,1

     

X

362

107,4

     

X

363

104,4

     

X

364

101,8

     

X

365

100,0

     

X

366

99,1

     

X

367

98,7

     

X

368

98,2

   

X

 

369

99,0

   

X

 

370

100,5

   

X

 

371

102,3

   

X

 

372

103,9

   

X

 

373

105,0

   

X

 

374

105,8

   

X

 

375

106,5

   

X

 

376

107,1

   

X

 

377

107,7

   

X

 

378

108,4

   

X

 

379

109,0

   

X

 

380

109,6

   

X

 

381

110,3

   

X

 

382

110,9

   

X

 

383

111,5

   

X

 

384

112,0

   

X

 

385

112,3

   

X

 

386

112,6

   

X

 

387

112,9

   

X

 

388

113,1

   

X

 

389

113,3

   

X

 

390

113,3

   

X

 

391

113,2

   

X

 

392

113,2

   

X

 

393

113,3

   

X

 

394

113,5

   

X

 

395

113,9

   

X

 

396

114,3

   

X

 

397

114,6

   

X

 

398

114,9

   

X

 

399

115,1

   

X

 

400

115,3

   

X

 

401

115,4

   

X

 

402

115,5

   

X

 

403

115,6

   

X

 

404

115,8

   

X

 

405

115,9

   

X

 

406

116,0

   

X

 

407

116,0

   

X

 

408

116,0

   

X

 

409

116,0

   

X

 

410

115,9

   

X

 

411

115,9

   

X

 

412

115,9

   

X

 

413

115,8

   

X

 

414

115,8

   

X

 

415

115,8

   

X

 

416

115,8

   

X

 

417

115,8

   

X

 

418

115,8

   

X

 

419

115,9

   

X

 

420

116,0

   

X

 

421

116,2

   

X

 

422

116,4

   

X

 

423

116,6

   

X

 

424

116,8

   

X

 

425

117,1

   

X

 

426

117,4

   

X

 

427

117,9

   

X

 

428

118,4

   

X

 

429

118,9

   

X

 

430

119,2

   

X

 

431

119,5

   

X

 

432

119,7

   

X

 

433

119,9

   

X

 

434

120,1

   

X

 

435

120,3

   

X

 

436

120,5

   

X

 

437

120,8

   

X

 

438

121,1

   

X

 

439

121,5

   

X

 

440

122,0

   

X

 

441

122,3

   

X

 

442

122,6

   

X

 

443

122,9

   

X

 

444

123,1

   

X

 

445

123,2

   

X

 

446

123,4

   

X

 

447

123,5

   

X

 

448

123,7

   

X

 

449

123,9

   

X

 

450

124,2

   

X

 

451

124,5

   

X

 

452

124,8

   

X

 

453

125,0

   

X

 

454

125,2

   

X

 

455

125,3

   

X

 

456

125,1

   

X

 

457

124,4

   

X

 

458

123,3

   

X

 

459

122,1

   

X

 

460

120,8

   

X

 

461

119,5

   

X

 

462

118,4

   

X

 

463

117,8

   

X

 

464

117,6

   

X

 

465

117,5

   

X

 

466

117,5

   

X

 

467

117,4

   

X

 

468

117,3

   

X

 

469

117,1

   

X

 

470

116,9

   

X

 

471

116,6

   

X

 

472

116,5

   

X

 

473

116,4

   

X

 

474

116,4

   

X

 

475

116,5

   

X

 

476

116,7

   

X

 

477

117,0

   

X

 

478

117,3

   

X

 

479

117,7

   

X

 

480

118,1

   

X

 

481

118,5

   

X

 

482

118,8

   

X

 

483

118,9

   

X

 

484

119,1

   

X

 

485

119,1

   

X

 

486

119,2

   

X

 

487

119,2

   

X

 

488

119,2

   

X

 

489

119,3

   

X

 

490

119,3

   

X

 

491

119,4

   

X

 

492

119,5

   

X

 

493

119,5

   

X

 

494

119,3

   

X

 

495

119,1

   

X

 

496

118,7

   

X

 

497

118,2

   

X

 

498

117,9

   

X

 

499

117,6

   

X

 

500

117,5

   

X

 

501

117,5

   

X

 

502

117,4

   

X

 

503

117,3

   

X

 

504

117,0

   

X

 

505

116,7

   

X

 

506

116,4

   

X

 

507

116,1

   

X

 

508

115,9

   

X

 

509

115,7

   

X

 

510

115,5

   

X

 

511

115,3

   

X

 

512

115,2

   

X

 

513

115,0

   

X

 

514

114,9

   

X

 

515

114,9

   

X

 

516

115,0

   

X

 

517

115,2

   

X

 

518

115,3

   

X

 

519

115,4

   

X

 

520

115,4

   

X

 

521

115,2

   

X

 

522

114,8

   

X

 

523

114,4

   

X

 

524

113,9

   

X

 

525

113,6

   

X

 

526

113,5

   

X

 

527

113,5

   

X

 

528

113,6

   

X

 

529

113,7

   

X

 

530

113,8

   

X

 

531

113,9

   

X

 

532

114,0

   

X

 

533

114,0

   

X

 

534

114,1

   

X

 

535

114,2

   

X

 

536

114,4

   

X

 

537

114,5

   

X

 

538

114,6

   

X

 

539

114,7

   

X

 

540

114,8

   

X

 
 

4.1.8.

Table Ap6-26

WMTC stage 2, cycle part 3 for vehicle class 3-2, 541 to 600 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

541

115,0

   

X

 

542

115,3

   

X

 

543

116,0

   

X

 

544

116,7

   

X

 

545

117,5

   

X

 

546

118,2

   

X

 

547

118,6

   

X

 

548

118,7

   

X

 

549

118,8

   

X

 

550

118,8

   

X

 

551

118,9

   

X

 

552

119,1

   

X

 

553

119,4

   

X

 

554

119,7

   

X

 

555

119,9

   

X

 

556

120,0

   

X

 

557

119,7

     

X

558

118,4

     

X

559

115,9

     

X

560

113,2

     

X

561

110,5

     

X

562

107,2

     

X

563

104,0

     

X

564

100,4

     

X

565

96,8

     

X

566

92,8

     

X

567

88,9

     

X

568

84,9

     

X

569

80,6

     

X

570

76,3

     

X

571

72,3

     

X

572

68,7

     

X

573

65,5

     

X

574

63,0

     

X

575

61,2

     

X

576

60,5

     

X

577

60,0

     

X

578

59,7

     

X

579

59,4

     

X

580

59,4

     

X

581

58,0

     

X

582

55,0

     

X

583

51,0

     

X

584

46,0

     

X

585

38,8

     

X

586

31,6

     

X

587

24,4

     

X

588

17,2

     

X

589

10,0

     

X

590

5,0

     

X

591

2,0

     

X

592

0,0

X

     

593

0,0

X

     

594

0,0

X

     

595

0,0

X

     

596

0,0

X

     

597

0,0

X

     

598

0,0

X

     

599

0,0

X

     

600

0,0

X

     
  • (4) 
    World Harmonised Motorcycle Test Cycle (WMTC) stage 3 (Revised WMTC)
  • 1. 
    Description of the WMTC stage 3 test cycle for L3e, L4e, L5e-A, L7e-A, L7e-B and L7e-C (sub-)category vehicles

The WMTC stage 3 to be used on the chassis dynamometer shall be as depicted in the following graph for (sub-)category L3e, L4e, L5e-A, L7e-A, L7e-B and L7e-C vehicles:

Figure Ap6-9

WMTC stage 3 for L3e, L4e, L5e-A, L7e-A, L7e-B and L7e-C category vehicles

Image

The ‘revised WMTC’ also referred to as ‘WMTC stage 3’ as shown in Figure Ap 6-9 is applicable for L3e, L4e, L5e-A, L7e-A, L7e-B and L7e-C vehicles and the vehicle speed trace of WMTC stage 3 is equivalent to WMTC stages 1 and 2. The WMTC stage 3 lasts 1 800 seconds and consists of two parts for vehicles with a low maximum design vehicle speed and three parts for the other L-category vehicles to be carried out without interruption if allowed by maximum vehicle speed limitation. The characteristic driving conditions (idling, acceleration, steady speed, deceleration, etc.) of WMTC stage 3 are laid down in chapter 3, which sets out the detailed vehicle speed trace of the WMTC stage 2.

  • 2. 
    Description of the WMTC stage 3 for L1e-A, L1e-B, L2e, L5e-B, L6e-A and L6e-B (sub-)category vehicles

The WMTC stage 3 to be used on the chassis dynamometer shall be a depicted in the following graph for (sub-)category L1e-A, L1e-B, L2e, L6e-A and L6e-B vehicles with a low maximum vehicle design speed:

Figure Ap6-10

WMTC stage 3 for L1e-A, L1e-B, L2e, L5e-B, L6e-A and L6e-B vehicles. The truncated vehicle speed trace limited to 25 km/h is applicable for L1e-A and L1e-B vehicles with a limited maximum design vehicle speed of 25 km/h

Image

2.1   The cold and warm vehicle speed traces are identical.

  • 3. 
    Description of the WMTC stage 3 for L1e-A, L1e-B, L2e, L5e-B, L6e-A and L6e-B (sub-)category vehicles

Figure Ap6-11

WMTC stage 3 for L1e-A, L1e-B, L2e, L5e-B, L6e-A and L6e-B (sub-)category vehicles. The truncated vehicle speed trace limited to 25 km/h is applicable for L1e-A and L1e-B vehicles with a limited maximum vehicle design speed of 25 km/h

Image

3.1.   The vehicle speed trace WMTC stage 3 shown in Figure Ap 6-10 is applicable for L1e-A, L1e-B, L2e, L5e-B, L6e-A and L6e-B (sub-)category vehicles and is equivalent to the vehicle speed trace WMTC stages 1 and 2, part 1 for class 1 vehicles, driven once cold followed by the same vehicle speed driven with a warmed-up propulsion. The WMTC stage 3 for L1e-A, L1e-B, L2e, L5e-B, L6e-A and L6e-B (sub-)category vehicles lasts 1 200 seconds and consists of two equivalent parts to be carried out without interruption.

3.2.   The characteristic driving conditions (idling, acceleration, steady speed, deceleration, etc.) of WMTC stage 3 for L1e-A, L1e-B, L2e, L5e-B, L6e-A and L6e-B vehicles are set out in the following points and tables.

 

3.2.1.

Table Ap6-27

WMTC stage 3, part 1, class 1, applicable for L1e-A and L1e-B (vmax ≤ 25 km/h) sub-category vehicles, cold or warm, 0 to 180 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

0

0

X

     

1

0

X

     

2

0

X

     

3

0

X

     

4

0

X

     

5

0

X

     

6

0

X

     

7

0

X

     

8

0

X

     

9

0

X

     

10

0

X

     

11

0

X

     

12

0

X

     

13

0

X

     

14

0

X

     

15

0

X

     

16

0

X

     

17

0

X

     

18

0

X

     

19

0

X

     

20

0

X

     

21

0

X

     

22

1

 

X

   

23

2,6

 

X

   

24

4,8

 

X

   

25

7,2

 

X

   

26

9,6

 

X

   

27

12

 

X

   

28

14,3

 

X

   

29

16,6

 

X

   

30

18,9

 

X

   

31

21,2

 

X

   

32

23,5

 

X

   

33

25

       

34

25

       

35

25

       

36

25

       

37

25

       

38

25

       

39

25

   

X

 

40

25

   

X

 

41

25

   

X

 

42

25

   

X

 

43

25

   

X

 

44

25

   

X

 

45

25

   

X

 

46

25

   

X

 

47

25

   

X

 

48

25

   

X

 

49

25

   

X

 

50

25

   

X

 

51

25

   

X

 

52

25

   

X

 

53

25

   

X

 

54

25

   

X

 

55

25

   

X

 

56

25

   

X

 

57

25

   

X

 

58

25

   

X

 

59

25

   

X

 

60

25

     

X

61

25

       

62

25

       

63

23

     

X

64

18,6

     

X

65

14,1

     

X

66

9,3

     

X

67

4,8

     

X

68

1,9

     

X

69

0

X

     

70

0

X

     

71

0

X

     

72

0

X

     

73

0

X

     

74

1,7

 

X

   

75

5,8

 

X

   

76

11,8

 

X

   

77

17,3

 

X

   

78

22

 

X

   

79

25

       

80

25

       

81

25

       

82

25

       

83

25

       

84

25

       

85

25

       

86

25

       

87

25

       

88

25

       

89

25

       

90

25

       

91

25

   

X

 

92

25

   

X

 

93

25

   

X

 

94

25

   

X

 

95

25

   

X

 

96

25

   

X

 

97

25

   

X

 

98

25

   

X

 

99

25

   

X

 

100

25

   

X

 

101

25

   

X

 

102

25

   

X

 

103

25

   

X

 

104

25

   

X

 

105

25

   

X

 

106

25

   

X

 

107

25

   

X

 

108

25

   

X

 

109

25

   

X

 

110

25

       

111

25

       

112

25

       

113

25

       

114

25

       

115

25

       

116

24,7

   

X

 

117

25

   

X

 

118

25

   

X

 

119

25

   

X

 

120

25

   

X

 
           

121

25

   

X

 

122

25

   

X

 

123

25

   

X

 

124

25

   

X

 

125

25

       

126

25

       

127

25

       

128

25

       

129

25

       

130

25

       

131

25

       

132

22,1

     

X

133

18,6

     

X

134

16,8

 

X

   

135

17,7

 

X

   

136

21,1

 

X

   

137

25

       

138

25

       

139

25

       

140

25

       

141

25

       

142

25

       

143

25

       

144

25

       

145

25

       

146

20,3

     

X

147

15

     

X

148

9,7

     

X

149

5

     

X

150

1,6

     

X

151

0

X

     

152

0

X

     

153

0

X

     

154

0

X

     

155

0

X

     

156

0

X

     

157

0

X

     

158

0

X

     

159

0

X

     

160

0

X

     

161

0

X

     

162

0

X

     

163

0

X

     

164

0

X

     

165

0

X

     

166

0

X

     

167

0

X

     

168

0

X

     

169

0

X

     

170

0

X

     

171

0

X

     

172

0

X

     

173

0

X

     

174

0

X

     

175

0

X

     

176

0

X

     

177

0

X

     

178

0

X

     

179

0

X

     

180

0

X

     
           
 

3.2.2.

Table Ap6-28

WMTC stage 3, part 1, class 1, applicable for L1e-A and L1e-B (vmax ≤ 25 km/h) sub-category vehicles, cold or warm, 181 to 360 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

181

0

X

     

182

0

X

     

183

0

X

     

184

0

X

     

185

0,4

 

X

   

186

1,8

 

X

   

187

5,4

 

X

   

188

11,1

 

X

   

189

16,7

 

X

   

190

21,3

 

X

   

191

24,8

 

X

   

192

25

       

193

25

       

194

25

       

195

25

       

196

25

       

197

25

       

198

25

       

199

25

       

200

25

       

201

25

       

202

25

       

203

25

   

X

 

204

25

   

X

 

205

25

   

X

 

206

25

   

X

 

207

25

   

X

 

208

25

   

X

 

209

25

   

X

 

210

25

   

X

 

211

25

   

X

 

212

25

   

X

 

213

25

   

X

 

214

25

   

X

 

215

25

   

X

 

216

25

   

X

 

217

25

   

X

 

218

25

   

X

 

219

25

   

X

 

220

25

   

X

 

221

25

   

X

 

222

25

   

X

 

223

25

   

X

 

224

25

   

X

 

225

25

   

X

 

226

25

   

X

 

227

25

   

X

 

228

25

   

X

 

229

25

   

X

 

230

25

   

X

 

231

25

   

X

 

232

25

   

X

 

233

25

   

X

 

234

25

   

X

 

235

25

   

X

 

236

25

   

X

 

237

25

   

X

 

238

25

   

X

 

239

25

   

X

 

240

25

   

X

 

241

25

   

X

 

242

25

       

243

25

       

244

25

       

245

25

       

246

25

       

247

25

       

248

21,8

     

X

249

17,2

     

X

250

13,7

     

X

251

10,3

     

X

252

7

     

X

253

3,5

     

X

254

0

X

     

255

0

X

     

256

0

X

     

257

0

X

     

258

0

X

     

259

0

X

     

260

0

X

     

261

0

X

     

262

0

X

     

263

0

X

     

264

0

X

     

265

0

X

     

266

0

X

     

267

0,5

 

X

   

268

2,9

 

X

   

269

8,2

 

X

   

270

13,2

 

X

   

271

17,8

 

X

   

272

21,4

 

X

   

273

24,1

 

X

   

274

25

       

275

25

       

276

25

       

277

25

   

X

 

278

25

   

X

 

279

25

   

X

 

280

25

   

X

 

281

25

   

X

 

282

25

   

X

 

283

25

   

X

 

284

25

   

X

 

285

25

   

X

 

286

25

   

X

 

287

25

   

X

 

288

25

   

X

 

289

25

   

X

 

290

25

   

X

 

291

25

   

X

 

292

25

   

X

 

293

25

   

X

 

294

25

   

X

 

295

25

   

X

 

296

25

   

X

 

297

25

   

X

 

298

25

   

X

 

299

25

   

X

 

300

25

   

X

 

301

25

   

X

 

302

25

   

X

 

303

25

   

X

 

304

25

   

X

 

305

25

   

X

 

306

25

   

X

 

307

25

   

X

 

308

25

   

X

 

309

25

   

X

 

310

25

   

X

 

311

25

   

X

 

312

25

   

X

 

313

25

   

X

 

314

25

       

315

25

       

316

22,7

     

X

317

19

     

X

318

16

     

X

319

14,6

 

X

   

320

15,2

 

X

   

321

16,9

 

X

   

322

19,3

 

X

   

323

22

 

X

   

324

24,6

 

X

   

325

25

       

326

25

       

327

25

   

X

 

328

25

   

X

 

329

25

   

X

 

330

25

   

X

 

331

25

   

X

 

332

25

   

X

 

333

25

   

X

 

334

25

   

X

 

335

25

   

X

 

336

25

   

X

 

337

25

   

X

 

338

25

   

X

 

339

25

   

X

 

340

25

   

X

 

341

25

   

X

 

342

25

   

X

 

343

25

   

X

 

344

25

   

X

 

345

25

   

X

 

346

25

   

X

 

347

25

   

X

 

348

25

   

X

 

349

25

   

X

 

350

25

   

X

 

351

25

   

X

 

352

25

   

X

 

353

25

   

X

 

354

25

   

X

 

355

25

   

X

 

356

25

   

X

 

357

25

   

X

 

358

25

   

X

 

359

25

   

X

 

360

25

   

X

 
 

3.2.3.

Table Ap6-29

WMTC stage 3, part 1, class 1, applicable for L1e-A and L1e-B (vmax ≤ 25 km/h) sub-category vehicles, cold or warm, 361 to 540 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

361

25

   

X

 

362

25

   

X

 

363

25

   

X

 

364

25

   

X

 

365

25

   

X

 

366

25

   

X

 

367

25

   

X

 

368

25

   

X

 

369

25

   

X

 

370

25

   

X

 

371

25

   

X

 

372

25

   

X

 

373

25

   

X

 

374

25

   

X

 

375

25

   

X

 

376

25

   

X

 

377

25

   

X

 

378

25

   

X

 

379

25

   

X

 

380

25

   

X

 

381

25

   

X

 

382

25

   

X

 

383

25

   

X

 

384

25

   

X

 

385

25

   

X

 

386

25

   

X

 

387

25

   

X

 

388

25

   

X

 

389

25

   

X

 

390

25

   

X

 

391

25

   

X

 

392

25

       

393

25

       

394

25

       

395

24,9

     

X

396

21,4

     

X

397

15,9

     

X

398

9,9

     

X

399

4,9

     

X

400

2,1

     

X

401

0,9

     

X

402

0

X

     

403

0

X

     

404

0

X

     

405

0

X

     

406

0

X

     

407

0

X

     

408

1,2

 

X

   

409

3,2

 

X

   

410

5,9

 

X

   

411

8,8

 

X

   

412

12

 

X

   

413

15,4

 

X

   

414

18,9

 

X

   

415

22,1

 

X

   

416

24,7

 

X

   

417

25

       

418

25

       

419

25

       

420

25

       

421

25

 

X

   

422

25

 

X

   

423

25

 

X

   

424

25

 

X

   

425

25

 

X

   

426

25

 

X

   

427

25

 

X

   

428

25

 

X

   

429

25

   

X

 

430

25

   

X

 

431

25

   

X

 

432

25

   

X

 

433

25

   

X

 

434

25

   

X

 

435

25

   

X

 

436

25

       

437

25

       

438

25

       

439

25

       

440

25

       

441

25

       

442

25

       

443

25

       

444

25

       

445

25

       

446

25

       

447

23,4

     

X

448

21,8

     

X

449

20,3

     

X

450

19,3

     

X

451

18,7

     

X

452

18,3

     

X

453

17,8

     

X

454

17,4

     

X

455

16,8

     

X

456

16,3

   

X

 

457

16,5

   

X

 

458

17,6

   

X

 

459

19,2

   

X

 

460

20,8

   

X

 

461

22,2

   

X

 

462

23

   

X

 

463

23

     

X

464

22

     

X

465

20,1

     

X

466

17,7

     

X

467

15

     

X

468

12,1

     

X

469

9,1

     

X

470

6,2

     

X

471

3,6

     

X

472

1,8

     

X

473

0,8

     

X

474

0

X

     

475

0

X

     

476

0

X

     

477

0

X

     

478

0

X

     

479

0

X

     

480

0

X

     

481

0

X

     

482

0

X

     

483

0

X

     

484

0

X

     

485

0

X

     

486

1,4

 

X

   

487

4,5

 

X

   

488

8,8

 

X

   

489

13,4

 

X

   

490

17,3

 

X

   

491

19,2

 

X

   

492

19,7

 

X

   

493

19,8

 

X

   

494

20,7

 

X

   

495

23,7

 

X

   

496

25

       

497

25

       

498

25

       

499

25

       

500

25

       

501

25

       

502

25

       

503

25

       

504

25

       

505

25

       

506

25

       

507

25

       

508

25

       

509

25

       

510

23,1

     

X

511

16,7

     

X

512

10,7

     

X

513

4,7

     

X

514

1,2

     

X

515

0

X

     

516

0

X

     

517

0

X

     

518

0

X

     

519

3

 

X

   

520

8,2

 

X

   

521

14,3

 

X

   

522

19,3

 

X

   

523

23,5

 

X

   

524

25

       

525

25

       

526

25

       

527

25

       

528

25

       

529

25

       

530

25

       

531

23,2

     

X

532

18,5

     

X

533

13,8

     

X

534

9,1

     

X

535

4,5

     

X

536

2,3

     

X

537

0

X

     

538

0

X

     

539

0

X

     

540

0

       
 

3.2.4.

Table Ap6-30

WMTC stage 3, part 1, class 1, applicable for L1e-A and L1e-B (vmax ≤ 25 km/h) sub-category vehicles, cold or warm, 541 to 600 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

541

0

X

     

542

2,8

 

X

   

543

8,1

 

X

   

544

14,3

 

X

   

545

19,2

 

X

   

546

23,5

 

X

   

547

25

       

548

25

       

549

25

       

550

25

       

551

25

       

552

25

       

553

25

   

X

 

554

25

   

X

 

555

25

   

X

 

556

25

   

X

 

557

25

   

X

 

558

25

   

X

 

559

25

   

X

 

560

25

   

X

 

561

25

   

X

 

562

25

   

X

 

563

25

   

X

 

564

25

   

X

 

565

25

   

X

 

566

25

   

X

 

567

25

   

X

 

568

25

   

X

 

569

25

   

X

 

570

25

   

X

 

571

25

   

X

 

572

25

   

X

 

573

25

       

574

25

       

575

25

       

576

25

       

577

25

       

578

25

       

579

25

       

580

25

       

581

25

       

582

21,8

     

X

583

17,7

     

X

584

13,5

     

X

585

9,4

     

X

586

5,6

     

X

587

2,1

     

X

588

0

X

     

589

0

X

     

590

0

X

     

591

0

X

     

592

0

X

     

593

0

X

     

594

0

X

     

595

0

X

     

596

0

X

     

597

0

X

     

598

0

X

     

599

0

X

     

600

0

X

     
 

3.2.5.

Table Ap6-31

WMTC stage 3, part 1, class 1, applicable for L1e-A and L1e-B (vmax ≤ 45 km/h) sub-category vehicles, cold or warm, 0 to 180 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

0

0

X

     

1

0

X

     

2

0

X

     

3

0

X

     

4

0

X

     

5

0

X

     

6

0

X

     

7

0

X

     

8

0

X

     

9

0

X

     

10

0

X

     

11

0

X

     

12

0

X

     

13

0

X

     

14

0

X

     

15

0

X

     

16

0

X

     

17

0

X

     

18

0

X

     

19

0

X

     

20

0

X

     

21

0

X

     

22

1

 

X

   

23

2,6

 

X

   

24

4,8

 

X

   

25

7,2

 

X

   

26

9,6

 

X

   

27

12

 

X

   

28

14,3

 

X

   

29

16,6

 

X

   

30

18,9

 

X

   

31

21,2

 

X

   

32

23,5

 

X

   

33

25,6

 

X

   

34

27,1

 

X

   

35

28

 

X

   

36

28,7

 

X

   

37

29,2

 

X

   

38

29,8

 

X

   

39

30,3

   

X

 

40

29,6

   

X

 

41

28,7

   

X

 

42

27,9

   

X

 

43

27,4

   

X

 

44

27,3

   

X

 

45

27,3

   

X

 

46

27,4

   

X

 

47

27,5

   

X

 

48

27,6

   

X

 

49

27,6

   

X

 

50

27,6

   

X

 

51

27,8

   

X

 

52

28,1

   

X

 

53

28,5

   

X

 

54

28,9

   

X

 

55

29,2

   

X

 

56

29,4

   

X

 

57

29,7

   

X

 

58

30

   

X

 

59

30,5

   

X

 

60

30,6

     

X

61

29,6

     

X

62

26,9

     

X

63

23

     

X

64

18,6

     

X

65

14,1

     

X

66

9,3

     

X

67

4,8

     

X

68

1,9

     

X

69

0

X

     

70

0

X

     

71

0

X

     

72

0

X

     

73

0

X

     

74

1,7

 

X

   

75

5,8

 

X

   

76

11,8

 

X

   

77

17,3

 

X

   

78

22

 

X

   

79

26,2

 

X

   

80

29,4

 

X

   

81

31,1

 

X

   

82

32,9

 

X

   

83

34,7

 

X

   

84

34,8

 

X

   

85

34,8

 

X

   

86

34,9

 

X

   

87

35,4

 

X

   

88

36,2

 

X

   

89

37,1

 

X

   

90

38

 

X

   

91

38,7

   

X

 

92

38,9

   

X

 

93

38,9

   

X

 

94

38,8

   

X

 

95

38,5

   

X

 

96

38,1

   

X

 

97

37,5

   

X

 

98

37

   

X

 

99

36,7

   

X

 

100

36,5

   

X

 

101

36,5

   

X

 

102

36,6

   

X

 

103

36,8

   

X

 

104

37

   

X

 

105

37,1

   

X

 

106

37,3

   

X

 

107

37,4

   

X

 

108

37,5

   

X

 

109

37,4

   

X

 

110

36,9

     

X

111

36

     

X

112

34,8

     

X

113

31,9

     

X

114

29

     

X

115

26,9

     

X

116

24,7

   

X

 

117

25,4

   

X

 

118

26,4

   

X

 

119

27,7

   

X

 

120

29,4

   

X

 
           

121

31,2

   

X

 

122

33

   

X

 

123

34,4

   

X

 

124

35,2

   

X

 

125

35,4

     

X

126

35,2

     

X

127

34,7

     

X

128

33,9

     

X

129

32,4

     

X

130

29,8

     

X

131

26,1

     

X

132

22,1

     

X

133

18,6

     

X

134

16,8

 

X

   

135

17,7

 

X

   

136

21,1

 

X

   

137

25,4

 

X

   

138

29,2

 

X

   

139

31,6

 

X

   

140

32,1

     

X

141

31,6

     

X

142

30,7

     

X

143

29,7

     

X

144

28,1

     

X

145

25

     

X

146

20,3

     

X

147

15

     

X

148

9,7

     

X

149

5

     

X

150

1,6

     

X

151

0

X

     

152

0

X

     

153

0

X

     

154

0

X

     

155

0

X

     

156

0

X

     

157

0

X

     

158

0

X

     

159

0

X

     

160

0

X

     

161

0

X

     

162

0

X

     

163

0

X

     

164

0

X

     

165

0

X

     

166

0

X

     

167

0

X

     

168

0

X

     

169

0

X

     

170

0

X

     

171

0

X

     

172

0

X

     

173

0

X

     

174

0

X

     

175

0

X

     

176

0

X

     

177

0

X

     

178

0

X

     

179

0

X

     

180

0

X

     
           
 

3.2.6.

Table Ap6-32

WMTC stage 3, part 1, class 1, applicable for L1e-A and L1e-B (vmax ≤ 45 km/h) sub-category vehicles, cold or warm, 181 to 360 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

181

0

X

     

182

0

X

     

183

0

X

     

184

0

X

     

185

0,4

 

X

   

186

1,8

 

X

   

187

5,4

 

X

   

188

11,1

 

X

   

189

16,7

 

X

   

190

21,3

 

X

   

191

24,8

 

X

   

192

28,4

 

X

   

193

31,8

 

X

   

194

34,6

 

X

   

195

36,3

 

X

   

196

37,8

 

X

   

197

39,6

 

X

   

198

41,3

 

X

   

199

43,3

 

X

   

200

45

       

201

45

       

202

45

       

203

45

   

X

 

204

45

   

X

 

205

45

   

X

 

206

45

   

X

 

207

45

   

X

 

208

45

   

X

 

209

45

   

X

 

210

45

   

X

 

211

45

   

X

 

212

45

   

X

 

213

45

   

X

 

214

45

   

X

 

215

45

   

X

 

216

45

   

X

 

217

45

   

X

 

218

45

   

X

 

219

45

   

X

 

220

45

   

X

 

221

45

   

X

 

222

45

   

X

 

223

45

   

X

 

224

45

   

X

 

225

45

   

X

 

226

45

   

X

 

227

45

   

X

 

228

45

   

X

 

229

45

   

X

 

230

45

   

X

 

231

45

   

X

 

232

45

   

X

 

233

45

   

X

 

234

45

   

X

 

235

45

   

X

 

236

44,4

   

X

 

237

43,5

   

X

 

238

43,2

   

X

 

239

43,3

   

X

 

240

43,7

   

X

 

241

43,9

   

X

 

242

43,8

     

X

243

43

     

X

244

40,9

     

X

245

36,9

     

X

246

32,1

     

X

247

26,6

     

X

248

21,8

     

X

249

17,2

     

X

250

13,7

     

X

251

10,3

     

X

252

7

     

X

253

3,5

     

X

254

0

X

     

255

0

X

     

256

0

X

     

257

0

X

     

258

0

X

     

259

0

X

     

260

0

X

     

261

0

X

     

262

0

X

     

263

0

X

     

264

0

X

     

265

0

X

     

266

0

X

     

267

0,5

 

X

   

268

2,9

 

X

   

269

8,2

 

X

   

270

13,2

 

X

   

271

17,8

 

X

   

272

21,4

 

X

   

273

24,1

 

X

   

274

26,4

 

X

   

275

28,4

 

X

   

276

29,9

 

X

   

277

30,5

   

X

 

278

30,5

   

X

 

279

30,3

   

X

 

280

30,2

   

X

 

281

30,1

   

X

 

282

30,1

   

X

 

283

30,1

   

X

 

284

30,2

   

X

 

285

30,2

   

X

 

286

30,2

   

X

 

287

30,2

   

X

 

288

30,5

   

X

 

289

31

   

X

 

290

31,9

   

X

 

291

32,8

   

X

 

292

33,7

   

X

 

293

34,5

   

X

 

294

35,1

   

X

 

295

35,5

   

X

 

296

35,6

   

X

 

297

35,4

   

X

 

298

35

   

X

 

299

34

   

X

 

300

32,4

   

X

 

301

30,6

   

X

 

302

29

   

X

 

303

27,8

   

X

 

304

27,2

   

X

 

305

26,9

   

X

 

306

26,5

   

X

 

307

26,1

   

X

 

308

25,7

   

X

 

309

25,5

   

X

 

310

25,7

   

X

 

311

26,4

   

X

 

312

27,3

   

X

 

313

28,1

   

X

 

314

27,9

     

X

315

26

     

X

316

22,7

     

X

317

19

     

X

318

16

     

X

319

14,6

 

X

   

320

15,2

 

X

   

321

16,9

 

X

   

322

19,3

 

X

   

323

22

 

X

   

324

24,6

 

X

   

325

26,8

 

X

   

326

27,9

 

X

   

327

28

   

X

 

328

27,7

   

X

 

329

27,1

   

X

 

330

26,8

   

X

 

331

26,6

   

X

 

332

26,8

   

X

 

333

27

   

X

 

334

27,2

   

X

 

335

27,4

   

X

 

336

27,5

   

X

 

337

27,7

   

X

 

338

27,9

   

X

 

339

28,1

   

X

 

340

28,3

   

X

 

341

28,6

   

X

 

342

29,1

   

X

 

343

29,6

   

X

 

344

30,1

   

X

 

345

30,6

   

X

 

346

30,8

   

X

 

347

30,8

   

X

 

348

30,8

   

X

 

349

30,8

   

X

 

350

30,8

   

X

 

351

30,8

   

X

 

352

30,8

   

X

 

353

30,8

   

X

 

354

30,9

   

X

 

355

30,9

   

X

 

356

30,9

   

X

 

357

30,8

   

X

 

358

30,4

   

X

 

359

29,6

   

X

 

360

28,4

   

X

 
 

3.2.7.

Table Ap6-33

WMTC stage 3, part 1, class 1, applicable for L1e-A and L1e-B (vmax ≤ 45 km/h) sub-category vehicles, cold or warm, 361 to 540 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

361

27,1

   

X

 

362

26

   

X

 

363

25,4

   

X

 

364

25,5

   

X

 

365

26,3

   

X

 

366

27,3

   

X

 

367

28,3

   

X

 

368

29,2

   

X

 

369

29,5

   

X

 

370

29,4

   

X

 

371

28,9

   

X

 

372

28,1

   

X

 

373

27,1

   

X

 

374

26,3

   

X

 

375

25,7

   

X

 

376

25,5

   

X

 

377

25,6

   

X

 

378

25,9

   

X

 

379

26,3

   

X

 

380

26,9

   

X

 

381

27,6

   

X

 

382

28,4

   

X

 

383

29,3

   

X

 

384

30,1

   

X

 

385

30,4

   

X

 

386

30,2

   

X

 

387

29,5

   

X

 

388

28,6

   

X

 

389

27,9

   

X

 

390

27,5

   

X

 

391

27,2

   

X

 

392

26,9

     

X

393

26,4

     

X

394

25,7

     

X

395

24,9

     

X

396

21,4

     

X

397

15,9

     

X

398

9,9

     

X

399

4,9

     

X

400

2,1

     

X

401

0,9

     

X

402

0

X

     

403

0

X

     

404

0

X

     

405

0

X

     

406

0

X

     

407

0

X

     

408

1,2

 

X

   

409

3,2

 

X

   

410

5,9

 

X

   

411

8,8

 

X

   

412

12

 

X

   

413

15,4

 

X

   

414

18,9

 

X

   

415

22,1

 

X

   

416

24,7

 

X

   

417

26,8

 

X

   

418

28,7

 

X

   

419

30,6

 

X

   

420

32,4

 

X

   

421

34

 

X

   

422

35,4

 

X

   

423

36,5

 

X

   

424

37,5

 

X

   

425

38,6

 

X

   

426

39,6

 

X

   

427

40,7

 

X

   

428

41,4

 

X

   

429

41,7

   

X

 

430

41,4

   

X

 

431

40,9

   

X

 

432

40,5

   

X

 

433

40,2

   

X

 

434

40,1

   

X

 

435

40,1

   

X

 

436

39,8

     

X

437

38,9

     

X

438

37,4

     

X

439

35,8

     

X

440

34,1

     

X

441

32,5

     

X

442

30,9

     

X

443

29,4

     

X

444

27,9

     

X

445

26,5

     

X

446

25

     

X

447

23,4

     

X

448

21,8

     

X

449

20,3

     

X

450

19,3

     

X

451

18,7

     

X

452

18,3

     

X

453

17,8

     

X

454

17,4

     

X

455

16,8

     

X

456

16,3

   

X

 

457

16,5

   

X

 

458

17,6

   

X

 

459

19,2

   

X

 

460

20,8

   

X

 

461

22,2

   

X

 

462

23

   

X

 

463

23

     

X

464

22

     

X

465

20,1

     

X

466

17,7

     

X

467

15

     

X

468

12,1

     

X

469

9,1

     

X

470

6,2

     

X

471

3,6

     

X

472

1,8

     

X

473

0,8

     

X

474

0

X

     

475

0

X

     

476

0

X

     

477

0

X

     

478

0

X

     

479

0

X

     

480

0

X

     

481

0

X

     

482

0

X

     

483

0

X

     

484

0

X

     

485

0

X

     

486

1,4

 

X

   

487

4,5

 

X

   

488

8,8

 

X

   

489

13,4

 

X

   

490

17,3

 

X

   

491

19,2

 

X

   

492

19,7

 

X

   

493

19,8

 

X

   

494

20,7

 

X

   

495

23,7

 

X

   

496

27,9

 

X

   

497

31,9

 

X

   

498

35,4

 

X

   

499

36,2

     

X

500

34,2

     

X

501

30,2

     

X

502

27,1

     

X

503

26,6

 

X

   

504

28,6

 

X

   

505

32,6

 

X

   

506

35,5

 

X

   

507

36,6

     

X

508

34,6

     

X

509

30

     

X

510

23,1

     

X

511

16,7

     

X

512

10,7

     

X

513

4,7

     

X

514

1,2

     

X

515

0

X

     

516

0

X

     

517

0

X

     

518

0

X

     

519

3

 

X

   

520

8,2

 

X

   

521

14,3

 

X

   

522

19,3

 

X

   

523

23,5

 

X

   

524

27,3

 

X

   

525

30,8

 

X

   

526

33,7

 

X

   

527

35,2

 

X

   

528

35,2

     

X

529

32,5

     

X

530

27,9

     

X

531

23,2

     

X

532

18,5

     

X

533

13,8

     

X

534

9,1

     

X

535

4,5

     

X

536

2,3

     

X

537

0

X

     

538

0

X

     

539

0

X

     

540

0

X

     
 

3.2.8.

Table Ap6-34

WMTC stage 3, part 1, class 1, applicable for L1e-A and L1e-B (vmax ≤ 45 km/h) sub-category vehicles, cold or warm, 541 to 600 s

 

time in s

roller speed in km/h

phase indicators

stop

acc

cruise

dec

541

0

X

     

542

2,8

 

X

   

543

8,1

 

X

   

544

14,3

 

X

   

545

19,2

 

X

   

546

23,5

 

X

   

547

27,2

 

X

   

548

30,5

 

X

   

549

33,1

 

X

   

550

35,7

 

X

   

551

38,3

 

X

   

552

41

 

X

   

553

43,6

   

X

 

554

43,7

   

X

 

555

43,8

   

X

 

556

43,9

   

X

 

557

44

   

X

 

558

44,1

   

X

 

559

44,2

   

X

 

560

44,3

   

X

 

561

44,4

   

X

 

562

44,5

   

X

 

563

44,6

   

X

 

564

44,9

   

X

 

565

45

   

X

 

566

45

   

X

 

567

45

   

X

 

568

45

   

X

 

569

45

   

X

 

570

45

   

X

 

571

45

   

X

 

572

45

   

X

 

573

45

       

574

45

       

575

45

       

576

42,3

     

X

577

39,5

     

X

578

36,6

     

X

579

33,7

     

X

580

30,1

     

X

581

26

     

X

582

21,8

     

X

583

17,7

     

X

584

13,5

     

X

585

9,4

     

X

586

5,6

     

X

587

2,1

     

X

588

0

X

     

589

0

X

     

590

0

X

     

591

0

X

     

592

0

X

     

593

0

X

     

594

0

X

     

595

0

X

     

596

0

X

     

597

0

X

     

598

0

X

     

599

0

X

     

600

0

X

     
 

  • (1) 
    PM = gears in neutral, clutch engaged. K = clutch disengaged.

Appendix 7

Road tests of L-category vehicles equipped with one wheel on the driven axle or with twinned wheels for the determination of test bench settings

  • 1. 
    Requirements for the rider
 

1.1.

The rider shall wear a well-fitting (one-piece) suit or similar clothing and a protective helmet, eye protection, boots and gloves.

 

1.2.

The rider, dressed and equipped as described in point 1.1., shall have a mass of 75 kg ± 5 kg and be 1,75 m ± 0,05 m tall.

 

1.3.

The rider shall be seated on the seat provided, with his feet on the footrests and his arms extended normally. This position shall allow the rider to have proper control of the vehicle at all times during the tests.

  • 2. 
    Requirement for the road and ambient conditions
 

2.1.

The test road shall be flat, level, straight and smoothly paved. The road surface shall be dry and free of obstacles or wind barriers that might impede the measurement of the running resistance. The slope of the surface shall not exceed 0,5 percent between any two points at least 2 m apart.

 

2.2.

During data collecting periods, the wind shall be steady. The wind speed and the direction of the wind shall be measured continuously or with adequate frequency at a location where the wind force during coast-down is representative.

 

2.3.

The ambient conditions shall be within the following limits:

 

maximum wind speed: 3 m/s

 

maximum wind speed for gusts: 5 m/s

 

average wind speed, parallel: 3 m/s

 

average wind speed, perpendicular: 2 m/s

 

maximum relative humidity: 95 percent

 

air temperature: 278,2 K to 308,2 K

 

2.4.

Standard ambient conditions shall be as follows:

 

pressure, P0: 100 kPa

 

temperature, T0: 293,2 K

 

relative air density, d0: 0,9197

 

air volumetric mass, ρ0: 1,189 kg/m3

 

2.5.

The relative air density when the vehicle is tested, calculated in accordance with the formula Ap 7-1, shall not differ by more than 7,5 percent from the air density under the standard conditions.

 

2.6.

The relative air density, dT, shall be calculated using the following formula:

Equation Ap 7-1:

Formula

where:

 
 

d0 is the reference relative air density at reference conditions (1,189 kg/m3)

 
 

pT is the mean ambient pressure during the test, in kPa;

 
 

p0 is the reference ambient pressure (101,3 kPa);

 
 

TT is the mean ambient temperature during test, in K;

 
 

T0 is the reference ambient temperature (293,2 K).

  • 3. 
    Condition of the test vehicle

3.1.   The test vehicle shall comply with the conditions described in point 1 of Appendix 8.

3.2.   When installing the measuring instruments on the test vehicle, care shall be taken to minimise their effects on the distribution of the load across the wheels. When installing the speed sensor outside the vehicle, care shall be taken to minimise the additional aerodynamic loss.

3.3.   Checks

The following checks shall be made in accordance with the manufacturer’s specifications for the use considered: wheels, wheel rims, tyres (make, type and pressure), front axle geometry, brake adjustment (elimination of parasitic drag), lubrication of front and rear axles, adjustment of the suspension and vehicle ground clearance, etc. Check that during freewheeling, there is no electrical braking.

  • 4. 
    Specified coast-down speeds
 

4.1.

The coast-down times must be measured between v1 and v2 as specified in Table Ap 7-1, depending on the vehicle class as defined in point 4.3. of Annex II.

 

4.2.

Table Ap7-1

Coast-down time measurement beginning speed and ending speed

 

Maximum design speed (km/h)

Specified target vehicle speed

vj in (km/h)

v1 in (km/h)

v2 in (km/h)

≤ 25 km/h

 

20

25

15

 

15

20

10

 

10

15

5

≤ 45 km/h

 

40

45

35

 

30

35

25

 

20

25

15

45 < maximum design speed ≤ 130 km/h and > 130 km/h

 

120

130*/

110

 

100

110*/

90

 

80

90*/

70

 

60

70

50

 

40

45

35

 

20

25

15

 

4.3.

When the running resistance is verified in accordance with point 5.2.2.3.2., the test can be executed at vj ± 5 km/h, provided that the coast-down time accuracy referred to in point 4.5.7. of Annex II is ensured.

  • 5. 
    Measurement of coast-down time
 

5.1.

After a warm-up period, the vehicle shall be accelerated to the coast-down starting speed, at which point the coast-down measurement procedure shall be started.

 

5.2.

Since shifting the transmission to neutral can be dangerous and complicated by the construction of the vehicle, the coasting may be performed solely with the clutch disengaged. Vehicles that have no means of cutting the transmitted engine power off prior to coasting may be towed until they reach the coast-down starting speed. When the coast-down test is reproduced on the chassis dynamometer, the drive train and clutch shall be in the same condition as during the road test.

 

5.3.

The vehicle steering shall be altered as little as possible and the brakes shall not be operated until the end of the coast-down measurement period.

 

5.4.

The first coast-down time Δtai corresponding to the specified speed vj shall be measured as the time taken for the vehicle to decelerate from vj + Δv to vj – Δv.

 

5.5.

The procedure described in points 5.1. to 5.4. shall be repeated in the opposite direction to measure the second coast-down time Δtbi.

 

5.6.

The average Δti of the two coast-down times Δtai and vtbi shall be calculated using the following equation:

Equation Ap 7-2:

Formula

 

5.7.

At least four tests shall be performed and the average coast-down time ΔTj calculated using the following equation:

Equation Ap 7-3:

Formula

 

5.8.

Tests shall be performed until the statistical accuracy P is equal to or less than 3 percent (P ≤ 3 percent).

The statistical accuracy P (as a percentage) is calculated using the following equation:

 
 

Equation Ap7-4:

Formula

where:

 
 

t is the coefficient given in Table Ap 7-2;

 
 

s is the standard deviation given by the following formula:

 
 

Equation Ap7-5:

Formula

where:

n is the number of tests.

Table Ap7-2

Coefficients for statistical accuracy

 

n

t

Formula

4

3,2

1,60

5

2,8

1,25

6

2,6

1,06

7

2,5

0,94

8

2,4

0,85

9

2,3

0,77

10

2,3

0,73

11

2,2

0,66

12

2,2

0,64

13

2,2

0,61

14

2,2

0,59

15

2,2

0,57

 

5.9.

In repeating the test, care shall be taken to start the coast-down after observing the same warm-up procedure and at the same coast-down starting speed.

 

5.10.

The coast-down times for multiple specified speeds may be measured in a continuous coast-down. In this case, the coast-down shall be repeated after observing the same warm-up procedure and at the same coast-down starting speed.

 

5.11.

The coast-down time shall be recorded. A specimen record form is given in the Regulation for administrative requirements.

  • 6. 
    Data processing

6.1.   Calculation of running resistance force

 

6.1.1.

The running resistance force Fj, in Newton, at the specified speed vj shall be calculated using the following equation:

Equation Ap7-6:

Formula

where:

mref= reference mass (kg);

Δv= vehicle speed deviation (km/h);

Δt= calculated coast down time difference (s);

 

6.1.2.

The running resistance force Fj shall be corrected in accordance with point 6.2.

6.2.   Running resistance curve fitting

The running resistance force, F, shall be calculated as follows:

 

6.2.1.

The following equation shall be fitted to the data set of Fj and vj obtained in points 4 and 6.1. respectively by linear regression to determine the coefficients f0 and f2,

Equation Ap7-7:

Formula

 

6.2.2.

The coefficients f0 and f2 thus determined shall be corrected to the standard ambient conditions using the following equations:

 
 

Equation Ap7-8:

Formula

 
 

Equation Ap7-9:

Formula

where:

K0 shall be determined on the basis of the empirical data for the particular vehicle and tyre tests or shall be assumed as follows, if the information is not available: Formula.

6.3.   Target running resistance force F* for chassis dynamometer setting

The target running resistance force F*(v0) on the chassis dynamometer at the reference vehicle speed v0, in Newton, is determined using the following equation:

Equation Ap7-10:

Formula

Appendix 8

Road tests of L-category vehicles equipped with two or more wheels on the powered axles for the determination of test bench settings

  • 1. 
    Preparation of the vehicle

1.1.   Running-in

The test vehicle shall be in normal running order and adjustment after having been run in for at least 300 km. The tyres shall be run in at the same time as the vehicle or shall have a tread depth within 90 and 50 percent of the initial tread depth.

1.2.   Checks

The following checks shall be made in accordance with the manufacturer’s specifications for the use considered: wheels, wheel rims, tyres (make, type and pressure), front axle geometry, brake adjustment (elimination of parasitic drag), lubrication of front and rear axles, adjustment of the suspension and vehicle ground clearance, etc. Check that during freewheeling, there is no electrical braking.

1.3.   Preparation for the test

 

1.3.1.

The test vehicle shall be loaded to its test mass including driver and measurement equipment, spread in a uniform way in the loading areas.

 

1.3.2.

The windows of the vehicle shall be closed. Any covers for air conditioning systems, headlamps, etc. shall be closed.

 

1.3.3.

The test vehicle shall be clean, properly maintained and used.

 

1.3.4.

Immediately before the test, the vehicle shall be brought to the normal running temperature in an appropriate manner.

 

1.3.5.

When installing the measuring instruments on the test vehicle, care shall be taken to minimise their effects on the distribution of the load across the wheels. When installing the speed sensor outside the test vehicle, care shall be taken to minimise the additional aerodynamic loss.

  • 2. 
    Specified vehicle speed v

The specified speed is required for determining the running resistance at the reference speed from the running resistance curve. To determine the running resistance as a function of vehicle speed in the vicinity of the reference speed v0, running resistances shall be measured at the specified speed v. At least four to five points indicating the specified speeds, along with the reference speeds, shall be measured. The calibration of the load indicator referred to in point 2.2. of Appendix 3 shall be performed at the applicable reference vehicle speed (vj) referred to in Table Ap8-1.

Table Ap8-1

Specified vehicle speeds to perform the coast-down time test as well as the designated reference vehicle speed vj depending on the maximum design speed (vmax) of the vehicle

 

Category

vmax

Vehicle speed (km/h)

> 130

120 (2)

100

80 (1)

60

40

20

130-100

90

80 (1)

60

40

20

100-70

60

50 (1)

40

30

20

70-45

50 (2)

40 (1)

30

20

45-25

 

40

30 (1)

20

   

≤ 25 km/h

     

20

15 (1)

10

  • 3. 
    Energy variation during coast-down procedure

3.1.   Total road load power determination

3.1.1.   Measurement equipment and accuracy

The margin of measurement error shall be less than 0,1 second for time and less than ± 0,5 km/h for speed. Bring the vehicle and the chassis dynamometer to the stabilised operating temperature, in order to approximate the road conditions.

3.1.2.   Test procedure

3.1.2.1.   Accelerate the vehicle to a speed of 5 km/h greater than the speed at which test measurement begins.

3.1.2.2.   Put the gearbox to neutral or disconnect the power supply.

3.1.2.3.   Measure the time t1 taken by the vehicle to decelerate from:

Formula to Formula

where:

 
 

Δv < 5 km/h for nominal vehicle speed < 50 km/h;

 
 

Δv < 10 km/h for nominal vehicle speed > 50 km/h.

3.1.2.4.   Carry out the same test in the opposite direction, measuring time t2.

3.1.2.5.   Take the average ti of the two times t1 and t2.

3.1.2.6.   Repeat these tests until the statistical accuracy (p) of the average:

Equation Ap 8-1:

Formula

The statistical accuracy (p) is defined by:

Equation Ap 8-2:

Formula is no more than 4 percent (p ≤ 4 percent).

where:

 
 

t is the coefficient in Table Ap 8-2;

 
 

s is the standard deviation.

Equation Ap 8-3:

Formula

n is the number of tests

Table Ap8-2

Factors t and t/√n depending on the number of coast-down tests performed

 

n

4

5

6

7

8

9

10

t

3,2

2,8

2,6

2,5

2,4

2,3

2,3

t/√n

1,6

1,25

1,06

0,94

0,85

0,77

0,73

3.1.2.7.   Calculation of the running resistance force

The running resistance force F at the specified vehicle speeds v is calculated as follows:

Equation Ap 8-4:

Formula

where:

m ref = reference mass (kg);

Δv= vehicle speed deviation (km/h);

Δt= calculated coast down time difference (s);

3.1.2.8.   The running resistance determined on the track shall be corrected to the reference ambient conditions as follows:

Equation Ap 8-5:

Formula

Equation Ap 8-6:

Formula

where:

 
 

RR is the rolling resistance at speed v (N);

 
 

RAERO is the aerodynamic drag at speed v (N);

 
 

RT is Formula (N);

 
 

KR is the temperature correction factor of rolling resistance, taken to be equal to: Formula;

 
 

t is the road test ambient temperature in K;

 
 

t0 is the reference ambient temperature (293,2 K);

 
 

dt is the air density at the test conditions (kg/m3);

 
 

d0 is the air density at the reference conditions (293,2 K, 101,3 kPa) = 1,189 kg/m3.

The ratios RR/RT and RAERO/RT shall be specified by the vehicle manufacturer on the basis of the data normally available to the company and to the satisfaction of the technical service. If these values are not available or if the technical service or approval authority do not accept these values, the following figures for the rolling/total resistance ratio given by the following formula may be used:

Equation Ap 8-7:

Formula

where:

m HP is the test mass and for each speed the coefficients a and b are as shown in the following table:

Table Ap8-3

Coefficients a and b to calculate rolling resistance ratio

 

v (km/h)

a

b

20

7,24 · 10–5

0,82

40

1,59 · 10–4

0,54

60

1,96 · 10–4

0,33

80

1,85 · 10–4

0,23

100

1,63 · 10–4

0,18

120

1,57 · 10–4

0,14

3.2.   Setting of the chassis dynamometer

The purpose of this procedure is to simulate on the dynamometer the total road load power at a given speed.

3.2.1.   Measurement equipment and accuracy

The measuring equipment shall be similar to that used on the test track and shall comply with point 4.5.7. of Annex II and point 1.3.5 of this Appendix.

3.2.2.   Test procedure

 

3.2.2.1.

Install the vehicle on the chassis dynamometer.

 

3.2.2.2.

Adjust the tyre pressure (cold) of the driving wheels as required for the chassis dynamometer.

 

3.2.2.3.

Adjust the equivalent inertia mass of the chassis dynamometer, in accordance with Table Ap8-4.

 

3.2.2.3.1.

Table Ap8-4

Determination of equivalent inertia mass for an L-category vehicle equipped with two or more wheels on the powered axles

 

Reference mass (mref)

(kg)

Equivalent inertia mass (mi)

(kg)

mref ≤ 105

100

105 < mref ≤ 115

110

115 < mref ≤ 125

120

125 < mref ≤ 135

130

135 < mref ≤ 150

140

150 < mref ≤ 165

150

165 < mref ≤ 185

170

185 < mref ≤ 205

190

205 < mref ≤ 225

210

225 < mref ≤ 245

230

245 < mref ≤ 270

260

270 < mref ≤ 300

280

300 < mref ≤ 330

310

330 < mref ≤ 360

340

360 < mref ≤ 395

380

395 < mref ≤ 435

410

435 < mref ≤ 480

450

480 < mref ≤ 540

510

540 < mref ≤ 600

570

600 < mref ≤ 650

620

650 < mref ≤ 710

680

710 < mref ≤ 770

740

770 < mref ≤ 820

800

820 < mref ≤ 880

850

880 < mref ≤ 940

910

940 < mref ≤ 990

960

990 < mref ≤ 1 050

1 020

1 050 < mref ≤ 1 110

1 080

1 110 < mref ≤ 1 160

1 130

1 160 < mref ≤ 1 220

1 190

1 220 < mref ≤ 1 280

1 250

1 280 < mref ≤ 1 330

1 300

1 330 < mref ≤ 1 390

1 360

1 390 < mref ≤ 1 450

1 420

1 450 < mref ≤ 1 500

1 470

1 500 < mref ≤ 1 560

1 530

1 560 < mref ≤ 1 620

1 590

1 620 < mref ≤ 1 670

1 640

1 670 < mref ≤ 1 730

1 700

1 730 < mref ≤ 1 790

1 760

1 790 < mref ≤ 1 870

1 810

1 870 < mref ≤ 1 980

1 930

1 980 < mref ≤ 2 100

2 040

2 100 < mref ≤ 2 210

2 150

2 210 < mref ≤ 2 320

2 270

2 320 < mref ≤ 2 440

2 380

2 440 < RM

2 490

 

3.2.2.4.

Bring the vehicle and the chassis dynamometer to the stabilised operating temperature, in order to approximate the road conditions.

 

3.2.2.5.

Carry out the operations specified in point 3.1.2., with the exception of those in points 3.1.2.4. and 3.1.2.5.

 

3.2.2.6.

Adjust the brake to reproduce the corrected running resistance (see point 3.1.2.8.) and to take into account the reference mass. This may be done by calculating the mean corrected road coast-down time from v1 to v2 and reproducing the same time on the dynamometer as follows:

Equation Ap 8-8:

Formula

 

3.2.2.7.

The power Pa to be absorbed by the bench shall be determined in order to enable the same total road load power to be reproduced for the same vehicle on different days or on different chassis dynamometers of the same type.

 

  • (1) 
    Applicable reference vehicle speed vj
  • (2) 
    if the vehicle speed can be attained by the vehicle.

Appendix 9

Explanatory note on the gearshift procedure for a type I test

  • 0. 
    Introduction

This explanatory note explains matters specified or described in this Regulation, including its Annexes or Appendices, and matters related thereto with regard to the gearshift procedure.

  • 1. 
    Approach
 

1.1.

The development of the gearshift procedure was based on an analysis of the gearshift points in the in-use data. In order to establish generalised correlations between technical specifications of the vehicles and gearshift speeds, the engine speeds were normalised to the utilisable band between rated speed and idling speed.

 

1.2.

In a second step, the end speeds (vehicle speed as well as normalised engine speed) for upshifts and downshifts were determined and recorded in a separate table. The averages of these speeds for each gear and vehicle were calculated and correlated with the vehicles’ technical specifications.

 

1.3.

The results of these analyses and calculations can be summarised as follows:

 

(a)

the gearshift behaviour is engine-speed-related rather than vehicle-speed-related;

 

(b)

the best correlation between gearshift speeds and technical data was found for normalised engine speeds and the power-to-mass ratio (maximum continuous rated power/(mass in running order + 75 kg));

 

(c)

the residual variations cannot be explained by other technical data or by different drive train ratios. They are most probably due to differences in traffic conditions and individual driver behaviour;

 

(d)

the best approximation between gearshift speeds and power-to-mass ratio was found for exponential functions;

 

(e)

the gearshift mathematical function for the first gear is significantly lower than for all other gears;

 

(f)

the gearshift speeds for all other gears can be approximated by one common mathematical function;

 

(g)

no differences were found between five-speed and six-speed gearboxes;

 

(h)

gearshift behaviour in Japan is significantly different from the equal-type gearshift behaviour in the European Union (EU) and in the United States of America (USA).

 

1.4.

In order to find a balanced compromise between the three regions, a new approximation function for normalised upshift speeds versus power-to-mass ratio was calculated as a weighted average of the EU/USA curve (with 2/3 weighting) and the Japanese curve (with 1/3 weighting), resulting in the following equations for normalised engine upshift speeds:

 
 

Equation Ap9-1: Normalised upshift speed in 1st gear (gear 1)

Formula

 
 

Equation Ap9-2: Normalised upshift speed in gears > 1

Formula

  • 2. 
    Calculation example

2.1   Figure Ap 9-1 shows an example of gearshift use for a small vehicle:

 

(a)

the lines in bold show the gear use for acceleration phases;

 

(b)

the dotted lines show the downshift points for deceleration phases;

 

(c)

in the cruising phases, the whole speed range between downshift speed and upshift speed may be used.

2.2   Where vehicle speed increases gradually during cruise phases, upshift speeds (v1—2, v2—3and vi—i+1) in km/h may be calculated using the following equations:

 
 

Equation Ap9-3:

Formula

 
 

Equation Ap9-4:

Formula

 
 

Equation Ap9-5:

Formula, i = 3 to ng

Figure Ap9-1

Example of a gearshift sketch — Gear use during deceleration and cruise phases

Image

Gear use during acceleration phases

Image

In order to allow the technical service more flexibility and to ensure driveability, the gearshift regression functions should be considered as lower limits. Higher engine speeds are permitted in any cycle phase.

  • 3. 
    Phase indicators

3.1   In order to avoid different interpretations in the application of the gearshift equations and thus to improve the comparability of the test, fixed-phase indicators are assigned to the speed pattern of the cycles. The specification of the phase indicators is based on the definition from the Japan Automobile Research Institute (JARI) of the four driving modes as shown in the following table:

Table Ap9-1

Definition of driving modes

 

4 modes

Definition

Idle mode

vehicle speed < 5 km/h and

-0,5 km/h/s (-0,139 m/s2) < acceleration < 0,5 km/h/s (0,139 m/s2)

Acceleration mode

acceleration > 0,5 km/h/s (0,139 m/s2)

Deceleration mode

acceleration < - 0,5 km/h/s (- 0,139 m/s2)

Cruise mode

vehicle speed ≥ 5 km/h and

-0,5 km/h/s (-0,139 m/s2) < acceleration < 0,5 km/h/s (0,139 m/s2)

3.2   The indicators were then modified in order to avoid frequent changes during relatively homogeneous cycle parts and thus improve driveability. Figure Ap9-2 shows an example from cycle part 1.

Figure Ap9-2

Example for modified phase indicators

Image

  • 4. 
    Calculation example
 

4.1.

An example of input data necessary for the calculation of shift speeds is shown in Table Ap 9-2. The upshift speeds for acceleration phases for first gear and higher gears are calculated using Equations 9-1 and 9-2. The denormalisation of engine speeds can be performed using the equation

Formula

.

 

4.2.

The downshift speeds for deceleration phases can be calculated using Equations 9-3 and 9-4. The ndv values in Table Ap 9-2 can be used as gear ratios. These values can also be used to calculate the corresponding vehicle speeds (

Formula

. The results are shown in Tables Ap9-3 and Ap9-4.

 

4.3.

Additional analyses and calculations were conducted to investigate whether these gearshift algorithms could be simplified and, in particular, whether engine shift speeds could be replaced by vehicle shift speeds. The analysis showed that vehicle speeds could not be brought in line with the gearshift behaviour of the in-use data.

 

4.3.1.

Table Ap9-2

Input data for the calculation of engine and vehicle shift speeds

 

Item

Input data

Engine capacity in cm3

600

Pn in kW

72

mk in kg

199

s in min-1

11 800

nidle in min-1

1 150

ndv1  (1)

133,66

ndv2

94,91

ndv3

76,16

ndv4

65,69

ndv5

58,85

ndv6

54,04

pmr (2) in kW/t

262,8

 
 

4.3.2.

Table Ap9-3

Shift speeds for acceleration phases for first gear and for higher gears (see Table Ap9-1)

 
 

EU/USA/JAPAN DRIVING BEHAVIOUR

EU/USA/Japan driving behaviour

n_acc_max (1) n_acc_max (i)

n_norm (3) in percent

24,9

34,9

n in min-1

3 804

4 869

 

4.3.3.

Table Ap9-4

Engine and vehicle shift speeds based on Table Ap9-2

 

Gearshift

EU/USA/Japan driving behaviour

v in km/h

n_norm (i)

in percent

n in min-1

Upshift

1→2

28,5

24,9

3 804

2→3

51,3

34,9

4 869

3→4

63,9

34,9

4 869

4→5

74,1

34,9

4 869

5→6

82,7

34,9

4 869

Downshift

2→cl (4)

15,5

3,0

1 470

3→2

28,5

9,6

2 167

4→3

51,3

20,8

3 370

5→4

63,9

24,5

3 762

6→5

74,1

26,8

4 005

 

  • (1) 
    ndv means the ratio between engine speed in min-1 and vehicle speed in km/h
  • (2) 
    pmr means the power-to-mass ratio calculated by
 

1.

Pn / (mk+75) · 1 000; Pn in kW, mk in kg

  • (3) 
    n_norm means the value calculated using equations Ap9-1 and Ap9-2.
  • (4) 
    ‘cl’ means ‘Clutch-Off’ timing.

Appendix 10

Type-approval tests of a replacement pollution-control device type for L-category vehicles as separate technical units

  • 1. 
    Scope of the Appendix

This Appendix applies to the type-approval of separate technical units within the meaning of Article 23(10) of Regulation (EU) No 168/2013, of pollution-control devices to be fitted as replacement parts on one or more types of L-category vehicle.

  • 2. 
    Definitions
 

2.1.

‘original equipment pollution-control devices’ mean pollution-control devices including oxygen sensors, catalytic converter types, assemblies of catalytic converters, particulate filters or carbon canisters for evaporative emission control covered by the type-approval and originally delivered for the approved vehicle;

 

2.2.

‘replacement pollution-control devices’ means pollution-control devices including oxygen sensors, catalytic converter types, assemblies of catalytic converters, particulate filters or carbon canisters for evaporative emission control intended to replace an original equipment pollution-control device on a vehicle type with regard to environmental and propulsion unit performance approved in accordance with this Appendix and which can be type-approved as a separate technical unit in accordance with Regulation (EU) No 168/2013;

  • 3. 
    Application for environmental performance type-approval
 

3.1.

Applications for type-approval of a type of replacement pollution-control device as a separate technical unit shall be submitted by the manufacturer of the system or by his authorised representative.

 

3.2.

A model for the information document is referred to in Article 27(4) of Regulation (EU) No 168/2013.

 

3.3.

For each type of replacement pollution-control device for which approval is requested, the type-approval application shall be accompanied by the following documents in triplicate, and by the following particulars:

 

3.3.1.

A description of the types of vehicles for which the device is intended, in terms of its characteristics;

 

3.3.2.

The numbers or symbols specific to the propulsion and vehicle type;

 

3.3.3.

Description of the replacement catalytic converter type stating the relative position of each of its components, together with the fitting instructions;

 

3.3.4.

Drawings of each component to facilitate location and identification, and statement of materials used. These drawings shall also indicate the intended location of the mandatory type-approval mark.

 

3.4.

The following shall be submitted to the technical service responsible for the type-approval test:

 

3.4.1.

Vehicle(s) of a type approved in accordance with this Appendix equipped with a new original equipment pollution-control device type. This (these) vehicles shall be selected by the applicant with the agreement of the technical service to the satisfaction of the approval authority. It (they) shall comply with the requirements of Annex II, type I test.

 

3.4.2.

The test vehicles shall be without emission-control system defects and be properly maintained and used; any excessively worn out or malfunctioning emission-related original part shall be repaired or replaced. The test vehicles shall be tuned properly and set to the manufacturer’s specification prior to emission testing.

 

3.4.3.

One sample of the type of the replacement pollution-control device type. This sample shall be clearly and indelibly marked with the applicant’s trade name or mark and its commercial designation.

  • 4. 
    Requirements

4.1.   General requirements

The design, construction and mounting of the replacement pollution-control device type shall be such that:

 

4.1.1.

the vehicle complies with the requirements of this Regulation under normal conditions of use, and in particular regardless of any vibrations to which it may be subjected;

 

4.1.2.

the replacement pollution-control device displays reasonable resistance to the corrosion phenomena to which it is exposed, with due regard to the normal conditions of use of the vehicle;

 

4.1.3.

the ground clearance available with the original equipment pollution-control device type and the angle at which the vehicle can lean over are not reduced;

 

4.1.4.

the surface of the device does not reach unduly high temperatures;

 

4.1.5.

the outline of the device has no projections or sharp edges;

 

4.1.6.

shock absorbers and suspension have adequate clearance;

 

4.1.7.

adequate safety clearance is provided for pipes;

 

4.1.8.

the replacement pollution-control device is impact-resistant in a way that is compatible with clearly-defined maintenance and installation requirements;

 

4.1.9.

if the original equipment pollution-control includes thermal protection, the replacement pollution-control device shall include equivalent protection;

 

4.1.10.

if (an) oxygen probe(s) and other sensors or actuators are originally installed on the exhaust line, the replacement pollution-control device type shall be installed at exactly the same position as the original equipment pollution-control device and the position on the exhaust line of the oxygen probe(s) and other sensors or actuators shall not be modified.

4.2.   Requirements regarding emissions

 

4.2.1.

The vehicle referred to in point 3.4.1, equipped with a replacement pollution-control device of the type for which type-approval is requested, shall undergo the tests laid down in Annexes II and VI (depending on the type-approval of the vehicle) (1).

 

4.2.1.1.

Evaluation of pollutant emissions from vehicles equipped with replacement pollution-control devices

Requirements regarding tailpipe or evaporative emissions are deemed to be complied with if the test vehicle equipped with the replacement pollutant-control device complies with the limit values in Annex VI to Regulation (EU) No 168/2013 (according to the type-approval of the vehicle) (1).

 

4.2.1.2.

Where the type-approval application is for different types of vehicles from the same manufacturer, the type I test may be limited to as few as two vehicles selected after agreement with the technical service to the satisfaction of the approval authority, provided that the different types of vehicle are fitted with the same type of original equipment pollution-control device.

 

4.2.2.

Requirements regarding permissible sound level

The vehicles referred to in point 3.4.1, equipped with a replacement pollution-control device type that could allow worse noise emissions than the type for which type-approval is requested, shall satisfy the requirements of Annex IX (according to the type-approval of the vehicle) (1). The test result for the vehicle in motion and for the stationary test shall be mentioned in the test report.

4.3.   Testing of the propulsion performance of the vehicle

 

4.3.1.

The replacement pollution-control device type shall be such as to ensure that the propulsion performance of the vehicle is comparable with that achieved with the original equipment pollution-control device type.

 

4.3.2.

The propulsion performance of the vehicle equipped with the replacement pollution-control device shall be compared with that of an original equipment pollution-control device, also in new condition, fitted in turn to the vehicle referred to in point 3.4.1.

 

4.3.3.

This test is carried out according to the applicable procedure set out in Annex X. The maximum net power and torque as well as the maximum attainable vehicle speed, if applicable, measured with the replacement pollution-control device, shall not deviate by more than + 5 % from those measured under the same conditions with the type-approved original equipment pollution-control device type.

 

  • (1) 
    As provided for in this Regulation in the version applicable to the type-approval of that vehicle.

Appendix 11

Type I test procedure for hybrid L-category vehicles

  • 1. 
    Introduction
 

1.1.

This Appendix defines the specific provisions regarding type-approval of hybrid electric L-category vehicles (HEV).

 

1.2.

In principle, for the environmental type I to IX tests, hybrid electric vehicles shall be tested in accordance with this Regulation, unless otherwise provided for in this Appendix.

 

1.3.

For the type I and type VII tests, off-vehicle charging (OVC) vehicles (as categorised in point 2) shall be tested according to Conditions A and B. Both sets of test results and the weighted values shall be reported in the test report drafted in accordance with the template referred to in Article 32(1) of Regulation (EU) No 168/2013.

 

1.4.

The emissions test results shall comply with the limits set-out in Regulation (EU) No 168/2013 under all test conditions specified in this Regulation.

  • 2. 
    Categories of hybrid vehicles

Table Ap11-1

Hybrid vehicle categories

 

Vehicle charging

Off-Vehicle Charging (1)

(OVC)

Not-off-vehicle Charging (2)

(NOVC)

Operating mode switch

Without

With

Without

With

  • 3. 
    Type I test methods

For the type I test, hybrid electric L-category vehicles shall be tested according to the applicable procedure in Annex VI to Regulation (EU) No 168/2013. For each test condition, the pollutant emission test result shall comply with the limits in Parts A1 and A2 of Annex VI to Regulation (EU) No 168/2013, whichever is applicable in accordance with Annex IV to Regulation (EU) No 168/2013.

3.1.   Externally chargeable vehicles (OVC HEVs) without an operating mode switch

3.1.1.   Two tests shall be performed under the following conditions:

 

(a)

condition A: the test shall be carried out with a fully charged electrical energy/power storage device.

 

(b)

condition B: the test shall be carried out with an electrical energy/power storage device in minimum state of charge (maximum discharge of capacity).

The profile of the state of charge (SOC) of the electrical energy/power storage device during different stages of the test is given in Appendix 3.1. to Annex VII.

3.1.2.   Condition A

3.1.2.1.   The procedure shall start with the discharge of the electrical energy/power storage device of the vehicle while driving (on the test track, on a chassis dynamometer, etc.) in any of the following conditions:

 

(a)

at a steady speed of 50 km/h until the fuel-consuming engine starts up;

 

(b)

if a vehicle cannot reach a steady speed of 50 km/h without the fuel-consuming engine starting up, the speed shall be reduced until it can run at a lower steady speed at which the fuel-consuming engine does not start up for a defined time or distance (to be determined by the technical service and the manufacturer subject to the agreement of the approval authority);

 

(c)

in accordance with the manufacturer’s recommendation.

The fuel-consuming engine shall be stopped within ten seconds of being automatically started.

3.1.2.2.   Conditioning of vehicle

The vehicle shall be conditioned by driving the applicable type I driving cycle as set out in Appendix 6.

3.1.2.3.   After this preconditioning and before testing, the vehicle shall be kept in a room in which the temperature remains relatively constant between 293,2 K and 303,2 K (20 °C and 30 °C). This conditioning shall be carried out for at least six hours and continue until the temperature of the engine oil and coolant, if any, are within ± 2 K of the temperature of the room, and the electrical energy/power storage device is fully charged as a result of the charging prescribed in point 3.1.2.4.

3.1.2.4.   During soak, the electrical energy/power storage device shall be charged with any of the following:

 

(a)

the on-board charger if fitted;

 

(b)

an external charger recommended by the manufacturer and referred to in the user manual, using the normal overnight charging procedure set out in point 3.2.2.4. of Appendix 3 to Annex VII.

This procedure excludes all types of special charges that could be automatically or manually initiated, e.g. equalisation or servicing charges.

The manufacturer shall declare that a special charge procedure has not occurred during the test;

End-of-charge criterion.

The end-of-charge criterion corresponds to a charging time of 12 hours, except where the standard instrumentation gives the driver a clear indication that the electrical energy storage device is not yet fully charged.

In this case, the maximum time is = 3 times the claimed battery capacity (Wh) / mains power supply (W).

3.1.2.5.   Test procedure

 

3.1.2.5.1.

The vehicle shall be started up by the means provided to the driver for normal use. The first test cycle starts on the initiation of the vehicle start-up procedure.

 

3.1.2.5.2.

The test procedures described in points 3.1.2.5.2.1. or 3.1.2.5.2.2. shall be used in accordance with the type I test procedure set out in Appendix 6.

 

3.1.2.5.2.1.

Sampling shall begin (BS) before or at the initiation of the vehicle start-up procedure and end on conclusion of the final idling period of the applicable type I test cycle (end of sampling (ES)).

 

3.1.2.5.2.2.

Sampling shall begin (BS) before or at the initiation of the vehicle start-up procedure and continue over a number of repeat test cycles. It shall end on conclusion of the final idling period in the applicable type I test cycle during which the battery reached the minimum state of charge in accordance with the following procedure (end of sampling (ES)):

 

3.1.2.5.2.2.1.

the electricity balance Q (Ah) is measured over each combined cycle according to the procedure in Appendix 3.2. to Annex VII and used to determine when the battery minimum state of charge has been reached;

 

3.1.2.5.2.2.2.

the battery minimum state of charge is considered to have been reached in combined cycle N if the electricity balance Q measured during combined cycle N+1 is not more than a 3 percent discharge, expressed as a percentage of the nominal capacity of the battery (in Ah) in its maximum state of charge, as declared by the manufacturer. At the manufacturer’s request, additional test cycles may be run and their results included in the calculations in points 3.1.2.5.5. and 3.1.4.2, provided that the electricity balance Q for each additional test cycle shows less discharge of the battery than over the previous cycle;

 

3.1.2.5.2.2.3.

after each cycle, a hot soak period of up to ten minutes is allowed. The powertrain shall be switched off during this period.

 

3.1.2.5.3.

The vehicle shall be driven according to the provisions in Appendix 6.

 

3.1.2.5.4.

The exhaust gases shall be analysed according to the provisions in Annex II.

 

3.1.2.5.5.

The test results shall be compared with the limits set out in Annex VI to Regulation (EU) No 168/2013 and the average emission of each pollutant (expressed in mg per kilometre) for Condition A shall be calculated (M1i).

In the case of testing according to point 3.1.2.5.2.1., (M1i) is the result of the single combined cycle run.

In the case of testing according to point 3.1.2.5.2.2., the test result of each combined cycle run (M1ia), multiplied by the appropriate deterioration factor and Ki factors, shall be less than the limits in Part A of Annex VI to Regulation (EU) No 168/2013. For the purposes of the calculation in point 3.1.4., M1i shall be defined as:

Equation Ap11-1:

Formula

where:

 

i

:

pollutant

a

:

test cycle

3.1.3.   Condition B

3.1.3.1.   Conditioning of vehicle.

The vehicle shall be conditioned by driving the applicable type I driving cycle as set out in Appendix 6.

3.1.3.2.   The electrical energy/power storage device of the vehicle shall be discharged while driving (on the test track, on a chassis dynamometer, etc.):

 

(a)

at a steady speed of 50 km/h until the fuel-consuming engine starts up, or

 

(b)

if a vehicle cannot reach a steady speed of 50 km/h without the fuel-consuming engine starting up, the speed shall be reduced until it can run a at lower steady speed at which the engine does not start up for a defined time or distance (to be determined by the technical service and the manufacturer), or

 

(c)

in accordance with the manufacturers’ recommendation.

The fuel-consuming engine shall be stopped within ten seconds of being automatically started.

3.1.3.3.   After this preconditioning and before testing, the vehicle shall be kept in a room in which the temperature remains relatively constant between 293,2 K and 303,2 K (20 °C and 30 °C). This conditioning shall be carried out for at least six hours and continue until the temperature of the engine oil and coolant, if any, are within ± 2 K of the temperature of the room.

3.1.3.4.   Test procedure

 

3.1.3.4.1.

The vehicle shall be started up by the means provided to the driver for normal use. The first cycle starts on the initiation of the vehicle start-up procedure.

 

3.1.3.4.2.

Sampling shall begin (BS) before or at the initiation of the vehicle start-up procedure and end on conclusion of the final idling period of the applicable type I test cycle (end of sampling (ES)).

 

3.1.3.4.3.

The vehicle shall be driven according to the provisions of Appendix 6.

 

3.1.3.4.4.

The exhaust gases shall be analysed in accordance with Annex II.

3.1.3.5.   The test results shall be compared with the limits in Part A of Annex VI to Regulation (EU) No 168/2013 and the average emission of each pollutant for Condition B shall be calculated (M2i). The test results M2i, multiplied by the appropriate deterioration and Ki factors, shall be less than the limits prescribed in Part A of Annex VI to Regulation (EU) No 168/2013.

3.1.4.   Test results

3.1.4.1.   Testing in accordance with point 3.1.2.5.2.1.

For reporting, the weighted values shall be calculated as follows:

Equation Ap11-2:

Formula

where:

 

Mi

=

mass emission of the pollutant i in mg/km;

M1i

=

average mass emission of the pollutant i in mg/km with a fully charged electrical energy/power storage device, calculated in accordance with point 3.1.2.5.5.;

M2i

=

average mass emission of the pollutant i in mg/km with an electrical energy/power storage device in minimum state of charge (maximum discharge of capacity), calculated in accordance with point 3.1.3.5.;

De

=

electric range of the vehicle determined according to the procedure set out in Appendix 3.3. to Annex VII, where the manufacturer shall provide the means for taking the measurement with the vehicle running in pure electric mode;

Dav

=

average distance between two battery recharges, as follows:

 

4 km for a vehicle with an engine capacity < 150 cm3;

 

6 km for a vehicle with an engine capacity ≥ 150 cm3 and vmax < 130 km/h;

 

10 km for a vehicle with an engine capacity ≥ 150 cm3 and vmax ≥ 130 km/h.

3.1.4.2.   Testing in accordance with point 3.1.2.5.2.2.

For communication, the weighted values shall be calculated as follows:

Equation Ap11-3:

Formula

where:

 

Mi

=

mass emission of the pollutant i in mg/km;

M1i

=

average mass emission of the pollutant i in mg/km with a fully charged electrical energy/power storage device, calculated in accordance with point 3.1.2.5.5.;

M2i

=

average mass emission of the pollutant i in mg/km with an electrical energy/power storage device in minimum state of charge (maximum discharge of capacity), calculated in accordance with point 3.1.3.5.;

Dovc

=

OVC range established in accordance with the procedure in Appendix 3.3. to Annex VII;

Dav

=

average distance between two battery recharges, as follows:

 

4 km for a vehicle with an engine capacity < 150 cm3;

 

6 km for a vehicle with an engine capacity ≥ 150 cm3 and vmax < 130 km/h;

 

10 km for a vehicle with an engine capacity ≥ 150 cm3 and vmax ≥ 130 km/h.

3.2.   Externally chargeable vehicles (OVC HEVs) with an operating mode switch.

3.2.1.   Two tests shall be performed under the following conditions:

3.2.1.1.   Condition A: the test shall be carried out with a fully charged electrical energy/power storage device.

3.2.1.2.   Condition B: the test shall be carried out with an electrical energy/power storage device in minimum state of charge (maximum discharge of capacity).

3.2.1.3.   The operating mode switch shall be positioned in accordance with the table Ap11-2.

Table Ap11-2

Look-up table to determine Condition A or B depending on different hybrid vehicle concepts and on the hybrid mode selection switch position

 
 

Hybrid-modes -›

Pure electric

 

Hybrid

Pure fuel-consuming

 

Hybrid

Pure electric

 

Pure fuel-consuming

 

Hybrid

Hybrid mode n (3)

 

Hybrid mode m1

Battery state of charge

 

Switch in position

Switch in position

Switch in position

Switch in position

Condition A

Fully charged

Hybrid

Hybrid

Most electric hybrid mode (4)

Hybrid

Condition B

Min. state of charge

Fuel-consuming

Fuel-consuming

Most fuel-consuming mode (5)

Hybrid

3.2.2.   Condition A

3.2.2.1.   If the pure electric range of the vehicle is higher than one complete cycle, the type I test may at the manufacturer’s request be carried out in pure electric mode. In this case, the engine preconditioning prescribed in point 3.2.2.3.1. or 3.2.2.3.2. can be omitted.

3.2.2.2.   The procedure shall start with the discharge of the electrical energy/power storage device of the vehicle while driving with the switch in pure electric position (on the test track, on a chassis dynamometer, etc.) at a steady speed of 70 percent ± 5 percent of the maximum design speed of the vehicle, which is to be determined according to the test procedure set out in Appendix 1 to Annex X.

Stopping the discharge occurs in any of the following conditions:

 

(a)

when the vehicle is not able to run at 65 percent of the maximum thirty minutes speed;

 

(b)

when the standard on-board instrumentation gives the driver an indication to stop the vehicle;

 

(c)

after 100 km.

If the vehicle is not equipped with a pure electric mode, the electrical energy/power storage device shall be discharged by driving the vehicle (on the test track, on a chassis dynamometer, etc.) in any of the following conditions:

 

(a)

at a steady speed of 50 km/h until the fuel-consuming engine of the HEV starts up;

 

(b)

if a vehicle cannot reach a steady speed of 50 km/h without the fuel-consuming engine starting up, the speed shall be reduced until it can run at a lower steady speed at which the fuel-consuming engine does not start up for a defined time or distance (to be determined by the technical service and the manufacturer);

 

(c)

in accordance with the manufacturers’ recommendation.

The fuel-consuming engine shall be stopped within ten seconds of being automatically started. By means of derogation if the manufacturer can prove to the technical service to the satisfaction of the approval authority that the vehicle is physically not capable of achieving the thirty minutes speed the maximum fifteen minute speed may be used instead.

3.2.2.3.   Conditioning of vehicle

3.2.2.4.   After this preconditioning and before testing, the vehicle shall be kept in a room in which the temperature remains relatively constant between 293,2 K and 303,2 K (20 °C and 3 °C). This conditioning shall be carried out for at least six hours and continue until the temperature of the engine oil and coolant, if any, are within ± 2 K of the temperature of the room, and the electrical energy/power storage device is fully charged as a result of the charging prescribed in point 3.2.2.5.

3.2.2.5.   During soak, the electrical energy/power storage device shall be charged with any of the following chargers:

 

(a)

the on-board charger if fitted;

 

(b)

an external charger recommended by the manufacturer, using the normal overnight charging procedure.

This procedure excludes all types of special charges that could be automatically or manually initiated, e.g. equalisation charges or servicing charges.

The manufacturer shall declare that a special charge procedure has not occurred during the test.

 

(c)

End-of-charge criterion

The end-of-charge criterion corresponds to a charging time of 12 hours, except where the standard instrumentation gives the driver a clear indication that the electrical energy storage device is not yet fully charged.

In this case, the maximum time is = 3 × claimed battery capacity (Wh) / mains power supply (W).

3.2.2.6.   Test procedure

 

3.2.2.6.1.

The vehicle shall be started up by the means provided to the driver for normal use. The first cycle starts on the initiation of the vehicle start-up procedure.

 

3.2.2.6.1.1.

Sampling shall begin (BS) before or at the initiation of the vehicle start-up procedure and end on conclusion of the final idling period of the applicable type I test cycle (end of sampling (ES)).

 

3.2.2.6.1.2.

Sampling shall begin (BS) before or at the initiation of the vehicle start-up procedure and continue over a number of repeat test cycles. It shall end on conclusion of the final idling period of the applicable type I test cycle during which the battery has reached the minimum state of charge in accordance with the following procedure (end of sampling (ES):

 

3.2.2.6.1.2.1.

The electricity balance Q (Ah) is measured over each combined cycle using the procedure in Appendix 3.2. to Annex VII and used to determine when the battery minimum state of charge has been reached;

 

3.2.2.6.1.2.2.

The battery minimum state of charge is considered to have been reached in combined cycle N if the electricity balance measured during combined cycle N+1 is not more than a 3 percent discharge, expressed as a percentage of the nominal capacity of the battery (in Ah) in its maximum state of charge, as declared by the manufacturer. At the manufacturer’s request, additional test cycles may be run and their results included in the calculations in points 3.2.2.7. and 3.2.4.3., provided that the electricity balance for each additional test cycle shows less discharge of the battery than over the previous cycle;

 

3.2.2.6.1.2.3.

After each cycle, a hot soak period of up to ten minutes is allowed. The powertrain shall be switched off during this period.

 

3.2.2.6.2.

The vehicle shall be driven according to the provisions of Appendix 6.

 

3.2.2.6.3.

The exhaust gases shall be analysed according to Annex II.

3.2.2.7.   The test results shall be compared to the emission limits set out in Annex VI(A) to Regulation (EU) No 168/2013 and the average emission of each pollutant (expressed in mg/km) for Condition A shall be calculated (M1i).

The test result of each combined cycle run M1ia, multiplied by the appropriate deterioration and Ki factors, shall be less than the emission limits in Part A or B of Annex VI to Regulation (EU) No 168/2013. For the purposes of the calculation in point 3.2.4., M1i shall be calculated according to Equation Ap11-1.

3.2.3.   Condition B

3.2.3.1.   Conditioning of vehicle.

The vehicle shall be conditioned by driving the applicable type I driving cycle set out in Appendix 6.

3.2.3.2.   The electrical energy/power storage device of the vehicle shall be discharged in accordance with point 3.2.2.2.

3.2.3.3.   After this preconditioning, and before testing, the vehicle shall be kept in a room in which the temperature remains relatively constant between 293,2 K and 303,2 K (20 °C and 30 °C). This conditioning shall be carried out for at least six hours and continue until the temperature of the engine oil and coolant, if any, are within ± 2 K of the temperature of the room.

3.2.3.4.   Test procedure

 

3.2.3.4.1.

The vehicle shall be started up by the means provided to the driver for normal use. The first cycle starts on the initiation of the vehicle start-up procedure.

 

3.2.3.4.2.

Sampling shall begin (BS) before or at the initiation of the vehicle start-up procedure and end on conclusion of the final idling period of the applicable type I test cycle (end of sampling (ES)).

 

3.2.3.4.3.

The vehicle shall be driven in accordance with the provisions of Appendix 6.

 

3.2.3.4.4.

The exhaust gases shall be analysed in accordance with the provisions in Annex II.

3.2.3.5.   The test results shall be compared with the pollutant limits in Annex VI to Regulation (EU) No 168/2013 and the average emission of each pollutant for Condition B shall be calculated (M2i). The test results M2i, multiplied by the appropriate deterioration and Ki factors, shall be less than the limits in Annex VI to Regulation (EU) No 168/2013.

3.2.4.   Test results

 

3.2.4.1.

Testing in accordance with point 3.2.2.6.2.1.

For communication, the weighted values shall be calculated as in Equation Ap11-2

where:

 

Mi

=

mass emission of the pollutant i in mg/km;

M1i

=

average mass emission of the pollutant i in mg/km with a fully charged electrical energy/power storage device, calculated in accordance with point 3.2.2.7.;

M2i

=

average mass emission of the pollutant i in mg/km with an electrical energy/power storage device in minimum state of charge (maximum discharge of capacity), calculated in accordance with point 3.2.3.5;

De

=

electric range of the vehicle with the switch in pure electric position, in accordance with Appendix 3.3. to Annex VII. If there is not a pure electric position, the manufacturer shall provide the means for taking the measurement with the vehicle running in pure electric mode.

Dav

=

average distance between two battery recharges, as follows:

 

4 km for a vehicle with an engine capacity < 150 cm3;

 

6 km for a vehicle with an engine capacity ≥ 150 cm3 and vmax < 130 km/h;

 

10 km for a vehicle with an engine capacity ≥ 150 cm3 and vmax ≥ 130 km/h.

 

3.2.4.2.

Testing in accordance with point 3.2.2.6.2.2.

For communication, the weighted values shall be calculated as in Equation Ap11-3

where:

 

Mi

=

mass emission of the pollutant i in mg/km;

M1i

=

average mass emission of the pollutant i in mg/km with a fully charged electrical energy/power storage device, calculated in accordance with point 3.2.2.7.;

M2i

=

average mass emission of the pollutant i in mg/km with an electrical energy/power storage device in minimum state of charge (maximum discharge of capacity), calculated in accordance with point 3.2.3.5.;

Dovc

=

OVC range according to the procedure in Appendix 3.3. to Annex VII;

Dav

=

average distance between two battery recharges, as follows:

 

4 km for a vehicle with an engine capacity < 150 cm3;

 

6 km for a vehicle with an engine capacity ≥ 150 cm3 and vmax < 130 km/h;

 

10 km for a vehicle with an engine capacity ≥ 150 cm3 and vmax ≥ 130 km/h.

3.3.   Not externally chargeable vehicles (not-OVC HEVs) without an operating mode switch

3.3.1.   These vehicles shall be tested according to Appendix 6.

3.3.2.   For preconditioning, at least two consecutive complete driving cycles are carried out without soak.

3.3.3.   The vehicle shall be driven in accordance with to the provisions of Appendix 6.

3.4.   Not externally chargeable vehicles (not-OVC HEVs) with an operating mode switch

3.4.1.   These vehicles are preconditioned and tested in hybrid mode in accordance with Annex II. If several hybrid modes are available, the test shall be carried out in the mode that is automatically set after the ignition key is turned (normal mode). On the basis of information provided by the manufacturer, the technical service shall ensure that the limit values are complied with in all hybrid modes.

3.4.2.   For preconditioning, at least two consecutive complete applicable driving cycles shall be carried out without soak.

3.4.3.   The vehicle shall be driven in accordance with the provisions of Annex II.

 

  • (1) 
    Also known as ‘externally chargeable’.
  • (2) 
    Also known as ‘not externally chargeable’.
  • (3) 
    For instance: sport, economic, urban, extra-urban position, etc.
  • (4) 
    Most electric hybrid mode: the hybrid mode which can be proven to have the highest electricity consumption of all selectable hybrid modes when tested in accordance with condition A of point 4 of Annex 10 to UNECE Regulation No 101, to be established based on information provided by the manufacturer and in agreement with the technical service.
  • (5) 
    Most fuel-consuming mode: the hybrid mode which can be proven to have the highest fuel consumption of all selectable hybrid modes when tested in accordance with condition B of point 4 of Annex 10 to UNECE regulation No 101, to be established based on information provided by the manufacturer and in agreement with the technical service.

Appendix 12

Type I test procedure for L-category vehicles fuelled with LPG, NG/biomethane, flex fuel H2NG or hydrogen

  • 1. 
    Introduction
 

1.1.

This Appendix describes the special requirements as regards the testing of LPG, NG/biomethane, H2NG or hydrogen gas for the approval of alternative fuel vehicles that run on those fuels or can run on petrol, LPG, NG/biomethane, H2NG or hydrogen.

 

1.2.

The composition of these gaseous fuels, as sold on the market, can vary greatly and fuelling systems must adapt their fuelling rates accordingly. To demonstrate this adaptability, the parent vehicle equipped with a representative LPG, NG/biomethane or H2NG fuel system shall be tested in type I tests on two extreme reference fuels.

 

1.3.

The requirements of this Appendix as regards hydrogen shall apply only to vehicles using hydrogen as a combustion fuel and not to those equipped with a fuel cell operating on hydrogen.

  • 2. 
    Granting of type-approval for an L-category vehicle equipped with a gaseous fuel system

Type-approval is granted subject to the following requirements:

2.1.   Exhaust emissions approval of a vehicle equipped with a gaseous fuel system

It shall be demonstrated that the parent vehicle equipped with a representative LPG, NG/biomethane, H2NG or hydrogen fuel system can adapt to any fuel composition that may appear on the market and comply with the following:

 

2.1.1.

In the case of LPG there are variations in C3/C4 composition (test fuel requirement A and B) and therefore the parent vehicle shall be tested on reference fuels A and B referred to in Appendix 2;

 

2.1.2.

In the case of NG/biomethane there are generally two types of fuel, high calorific fuel (G20) and low calorific fuel (G25), but with a significant spread within both ranges; they differ significantly in Wobbe index. These variations are reflected in the reference fuels. The parent vehicle shall be tested on both reference fuels referred to in Appendix 2;

 

2.1.3.

In the case of a flex fuel H2NG vehicle, the composition range may vary from 0 % hydrogen (L-gas) to a maximum percentage of hydrogen within the mixture (H-gas), as specified by the manufacturer. It shall be demonstrated that the parent vehicle can adapt to any percentage within the range specified by the manufacturer and the vehicle shall be tested in the type I test on 100 % H-gas and 100 % L-gas. It shall also be demonstrated that it can adapt to any NG/biomethane composition that may appear on the market, regardless of the percentage of hydrogen in the mixture.

 

2.1.4.

For vehicles equipped with hydrogen fuel systems, compliance shall be tested on the single hydrogen reference fuel referred to in Appendix 2.

 

2.1.5.

If the transition from one fuel to another is in practice aided through the use of a switch, this switch shall not be used during type-approval. In such cases, at the manufacturer’s request and with the agreement of the technical service, the pre-conditioning cycle referred in point 5.2.4 of Annex II may be extended.

 

2.1.6.

The ratio of emission results ‘r’ shall be determined for each pollutant as shown in Table Ap12-1 for LPG, NG/biomethane and H2NG vehicles.

 

2.1.6.1.

In the case of LPG and NG/biomethane vehicles, the ratios of emission results ‘r’ shall be determined for each pollutant as follows:

Table Ap12-1

Calculation ratio ‘r’ for LPG and NG/biomethane vehicles

 

Type(s) of fuel

Reference fuels

Calculation of ‘r’

LPG and petrol

(Approval B)

Fuel A

Formula

or LPG only

(Approval D)

Fuel B

NG/biomethane

fuel G20

Formula

fuel G25

 

2.1.6.2.

In the case of flex fuel H2NG vehicles, two ratios of emission results ‘r1’ and ‘r2’ shall be determined for each pollutant as follows:

Table Ap12-2

Look-up table ratio ‘r’ for NG/biomethane or H2NG gaseous fuels

 

Type(s) of fuel

Reference fuels

Calculation of ‘r’

NG/biomethane

fuel G20

Formula

fuel G25

H2NG

Mixture of hydrogen and G20 with the maximum percentage of hydrogen specified by the manufacturer

Formula

Mixture of hydrogen and G25 with the maximum percentage of hydrogen specified by the manufacturer

2.2.   Exhaust emissions approval of a member of the propulsion family

For the type-approval of mono-fuel gas vehicles and bi-fuel vehicles operating in gas mode, fuelled by LPG, NG/biomethane, H2NG or hydrogen, as a member of the propulsion family in Annex XI, a type I test shall be performed with one gaseous reference fuel. For LPG, NG/biomethane and H2NG vehicles, this reference fuel may be either of the reference fuels in Appendix 2. The gas-fuelled vehicle is considered to comply if the following requirements are met:

 

2.2.1.

The test vehicle shall comply with the definition of a propulsion family member in Annex XI.

 

2.2.2.

If the test fuel requirement is reference fuel A for LPG or G20 for NG/biomethane, the emission result shall be multiplied by the relevant factor ‘r’ if r > 1; if r < 1, no correction is needed.

 

2.2.3.

If the test fuel requirement is reference fuel B for LPG or G25 for NG/biomethane, the emission result shall be divided by the relevant factor ‘r’ if r < 1; if r > 1, no correction is needed.

 

2.2.4.

At the manufacturer’s request, the type I test may be performed on both reference fuels, so that no correction is needed.

 

2.2.5.

The parent vehicle shall comply with the emission limits for the relevant category set out in Annex VI(A) to Regulation (EU) No 168/2013 and for both measured and calculated emissions.

 

2.2.6.

If repeated tests are conducted on the same engine, an average shall first be taken of the results on reference fuel G20, or A, and those on reference fuel G25, or B; the ‘r’ factor shall then be calculated from these averages.

 

2.2.7.

For the type-approval of a flex fuel H2NG vehicle as a member of a family, two type I tests shall be performed, the first test with 100 % of either G20 or G25, and the second test with the mixture of hydrogen and the same NG/biomethane fuel used during the first test, with the maximum hydrogen percentage specified by the manufacturer.

 

2.2.7.1.

If the NG/biomethane fuel is the reference fuel G20, the emission result for each pollutant shall be multiplied by the relevant factors (r1 for the first test and r2 for the second test) in point 2.1.6. if the relevant factor > 1; if the correspondent relevant factor < 1, no correction is needed.

 

2.2.7.2.

If the NG/biomethane fuel is the reference fuel G25, the emission result for each pollutant shall be divided by the corresponding relevant factor (r1 for the first test and r2 for the second test) calculated in accordance with point 2.1.6., if this is < 1; if the corresponding relevant factor > 1, no correction is needed.

 

2.2.7.3.

At the manufacturer’s request, the type I test shall be conducted with the four possible combinations of reference fuels, in accordance with point 2.1.6., so that no correction is needed.

 

2.2.7.4.

If repeated tests are carried out on the same engine, an average shall first be taken of the results on reference fuel G20, or H2G20, and those on reference fuel G25, or H2G25 with the maximum hydrogen percentage specified by the manufacturer; the ‘r1’ and ‘r2’ factors shall then be calculated from these averages.

 

2.2.8.

During the type I test, the vehicle shall use only petrol for a maximum of 60 consecutive seconds directly after engine crank and start when operating in gas-fuelling mode.

Appendix 13

Type I test procedure for L-category vehicles equipped with a periodically regenerating system

  • 1. 
    Introduction

This Appendix contains specific provisions regarding the type-approval of vehicles equipped with a periodically regenerating system.

  • 2. 
    Scope of the type-approval for vehicles with a periodically regenerating system as regards type I tests

2.1.   L-category vehicles falling within the scope of Regulation (EU) No 168/2013 that are equipped with periodically regenerating systems shall comply with the requirements in this Appendix.

2.2.   Instead of carrying out the test procedures in the following point, a fixed Ki value of 1,05 may be used if the technical service sees no reason why this value could be exceeded and after approval of the approval authority.

2.3.   During cycles where regeneration occurs, emission standards can be exceeded. If a regeneration of an anti-pollution device occurs at least once per Type I test and that has already regenerated at least once during the vehicle preparation cycle, it will be considered as a continuously regenerating system which does not require a special test procedure.

  • 3. 
    Test procedure

The vehicle may be equipped with a switch capable of preventing or permitting the regeneration process provided that its operation has no effect on original engine calibration. This switch shall be used for the purpose of preventing regeneration only during loading of the regeneration system and during the pre-conditioning cycles. However, it shall not be used during the measurement of emissions in the regeneration phase; rather, the emission test shall be carried out with the unchanged original equipment manufacturer’s powertrain control unit / engine control unit / drive train control unit if applicable and powertrain software.

3.1.   Measurement of carbon dioxide emission and fuel consumption between two cycles where regenerative phases occur.

3.1.1.   The average of carbon dioxide emission and fuel consumption between regeneration phases and during loading of the regenerative device shall be determined from the arithmetic mean of several approximately equidistant (if more than two) type I operating cycles.

As an alternative, the manufacturer may provide data to show that carbon dioxide emissions and fuel consumption remain constant (+4 percent) between regeneration phases. In this case, the carbon dioxide emissions and fuel consumption measured during the regular type I test may be used. In any other case, emissions shall be measured for at least two type I operating cycles: one immediately after regeneration (before new loading) and one as immediately as possible before a regeneration phase. All emissions measurements and calculations shall be carried out in accordance with Annex II. Average emissions for a single regenerative system shall be determined in accordance with point 3.3 and for multiple regeneration systems in accordance with point 3.4.

3.1.2.   The loading process and Ki determination shall be carried out on a chassis dynamometer during the type I operating cycles. These cycles may be run continuously (i.e. without the need to switch the engine off between cycles). After any number of completed cycles, the vehicle may be removed from the chassis dynamometer and the test continued at a later time.

3.1.3.   The number of cycles (D) between two cycles in which regeneration phases occur, the number of cycles over which emissions measurements are taken (n) and each emissions measurement (M’sij) shall be reported according to the template of the test report referred to in Article 32(1) of Regulation (EU0 No 168/2013.

3.2.   Measurement of carbon dioxide emissions and fuel consumption during regeneration

3.2.1.   If necessary, the vehicle may be prepared for the emissions test during a regeneration phase using the preparation cycles in Appendix 6.

3.2.2.   The test and vehicle conditions for the type I test described in Annex II apply before the first valid emission test is carried out.

3.2.3.   Regeneration shall not occur during the preparation of the vehicle. This may be ensured by one of the following methods:

 

3.2.3.1.

a ‘dummy’ regenerating system or partial system may be fitted for the pre-conditioning cycles;

 

3.2.3.2.

any other method agreed between the manufacturer and the approval authority.

3.2.4.   A cold-start exhaust emission test including a regeneration process shall be carried out in accordance with the applicable type I operating cycle.

3.2.5.   If the regeneration process requires more than one operating cycle, subsequent test cycle(s) shall be driven immediately, without switching the engine off, until complete regeneration has been achieved (each cycle shall be completed). The time necessary to set up a new test shall be as short as possible (e.g. as required to change a particulate matter filter on the analysing equipment). The engine shall be switched off during this period.

3.2.6.   The emission values, including pollutant and carbon dioxide emission values, and fuel consumption during regeneration (Mri) shall be calculated in accordance with Annex II and point 3.3. The number of operating cycles (d) measured for complete regeneration shall be recorded.

3.3.   Calculation of the combined exhaust emissions of a single regenerative system:

 
 

Equation Ap13-1:

Formula n ≥ 2

 
 

Equation Ap13-2:

Formula

 
 

Equation Ap13-3:

Formula

where for each pollutant (i) considered:

 

M′sij

=

mass emissions of pollutant (i), mass emissions of CO2 in g/km and fuel consumption in l/100 km over one type I operating cycle without regeneration;

M′rij

=

mass emissions of pollutant (i), mass emissions of CO2 in g/km and fuel consumption in l/100 km over one type I operating cycle during regeneration (when n > 1, the first type I test is run cold, and subsequent cycles are hot);

Msi

=

mean mass emissions of pollutant (i) in mg/km or mean mass emissions of CO2 in g/km and fuel consumption in l/100 km over one part (i) of the operating cycle without regeneration;

Mri

=

mean mass emissions of pollutant (i) in mg/km or mean mass emissions of CO2 in g/km and fuel consumption in l/100 km over one part (i) of the operating cycle during regeneration;

Mpi

=

mean mass emissions of pollutant (i) in mg/km or mean mass emissions of CO2 in g/km and fuel consumption in l/100 km;

n

=

number of test points at which emissions measurements (type I operating cycles) are taken between two cycles where regenerative phases occur, ≥ 2;

d

=

number of operating cycles required for regeneration;

D

=

number of operating cycles between two cycles in which regenerative phases occur.

Figure Ap13-1

Example of measurement parameters. Parameters measured during emissions or fuel consumption test during and between cycles in which regeneration occurs (schematic example – the emissions during ‘D’ may increase or decrease)

Image

3.3.1.   Calculation of the regeneration factor K for each pollutant (i), carbon dioxide emission and fuel consumption (i) considered:

Equation Ap13-4:

Formula

Msi, Mpi and Ki results shall be recorded in the test report delivered by the technical service.

Ki may be determined following the completion of a single sequence.

3.4.   Calculation of combined exhaust emissions, carbon dioxide emissions and fuel consumption of multiple periodic regenerating systems

 
 

Equation Ap13-5:

Formula nk ≥ 2

 
 

Equation Ap13-6:

Formula

 
 

Equation Ap13-7:

Formula

 
 

Equation Ap13-8:

Formula

 
 

Equation Ap13-9:

Formula

 
 

Equation Ap13-10:

Formula

 
 

Equation Ap13-11:

Formula

where for each pollutant (i) considered:

 

M′sik

=

mass emissions of event k of pollutant (i) in mg/km, mass emissions of CO2 in g/km and fuel consumption in l/100 km over one type I operating cycle without regeneration;

Mrik

=

mass emissions of event k of pollutant (i) in mg/km, mass emissions of CO2 in g/km and fuel consumption in l/100 km over one type I operating cycle during regeneration (if d > 1, the first type I test is run cold, and subsequent cycles are hot);

M′sik,j

=

mass emissions of event k of pollutant (i) in mg/km, mass emissions of CO2 in g/km and fuel consumption in l/100 km over one type I operating cycle without regeneration measured at point j; 1 ≤ j ≤ n;

M′rik,j

=

mass emissions of event k of pollutant (i) in mg/km, mass emissions of CO2 in g/km and fuel consumption in l/100 km over one type I operating cycle during regeneration (when j > 1, the first type I test is run cold, and subsequent cycles are hot) measured at operating cycle j; 1 ≤ j ≤ d;

Msi

=

mass emission of all events k of pollutant (i) in mg/km, of CO2 in g/km and fuel consumption in l/100 km without regeneration;

Mri

=

mass emission of all events k of pollutant (i) in mg/km, of CO2 in g/km and fuel consumption in l/100 km during regeneration;

Mpi

=

mass emission of all events k of pollutant (i) in mg/km, of CO2 in g/km and fuel consumption in l/100 km;

nk

=

number of test points of event k at which emissions measurements (type I operating cycles) are taken between two cycles in which regenerative phases occur;

dk

=

number of operating cycles of event k required for regeneration;

Dk

=

number of operating cycles of event k between two cycles in which regenerative phases occur.

Figure Ap13-2

Parameters measured during emissions test during and between cycles in which regeneration occurs (schematic example)

Image

Figure Ap13-3

Parameters measured during emissions test during and between cycles where regeneration occurs (schematic example)

Image

For application of a simple and realistic case, the following description gives a detailed explanation of the schematic example shown in Figure Ap13-3:

 

1.

‘Particulate Filter’: regenerative, equidistant events, similar emissions (±15 percent) from event to event

 
 

Equation Ap13-12:

Dk = Dk+1 = D1

 
 

Equation Ap13-13:

dk = dk+1 = d1

 
 

Equation Ap13-14:

Formula

nk = n

 

2.

‘DeNOx’: the desulphurisation (SO2 removal) event is initiated before an influence of sulphur on emissions is detectable (±15 percent of measured emissions) and in this example, for exothermic reasons, together with the last DPF regeneration event.

Equation Ap13-15:

M′sik,j=1 = constant →

Msik = Msik+1 = Msi2

Mrik = Mrik+1 = Mri2

For SO2 removal event: Mri2, Msi2, d2, D2, n2 = 1

 

3.

Complete system (DPF + DeNOx):

 
 

Equation Ap13-16:

Formula

 
 

Equation Ap13-17:

Formula

 
 

Equation Ap13-18:

Formula

The calculation of the factor (Ki) for multiple periodic regenerating systems is possible only after a certain number of regeneration phases for each system. After performing the complete procedure (A to B, see Figure Ap13-2), the original starting conditions A should be reached again.

3.4.1.   Extension of approval for a multiple periodic regeneration system

 

3.4.1.1.

If the technical parameters or the regeneration strategy of a multiple regeneration system for all events within this combined system are changed, the complete procedure including all regenerative devices shall be performed by measurements to update the multiple Ki – factor.

 

3.4.1.2.

If a single device of the multiple regeneration system is changed only in strategy parameters (i.e. such as ‘D’ or ‘d’ for DPF) and the manufacturer can provide the technical service with plausible technical data and information demonstrating that:

 

(a)

there is no detectable interaction with the other device(s) of the system; and

 

(b)

the important parameters (i.e. construction, working principle, volume, location, etc.) are identical,

the necessary update procedure for ki may be simplified.

In such cases, where agreed between the manufacturer and the technical service, only a single event of sampling/storage and regeneration shall be performed and the test results (‘Msi’, ‘Mri’), in combination with the changed parameters (‘D’ or ‘d’), may be introduced into the relevant formula(e) to update the multiple Ki - factor in mathematically by substituting the existing basic Ki - factor formula(e).

ANNEX III

Test type II requirements: tailpipe emissions at (increased) idle and free acceleration

  • 1. 
    Introduction

This Annex describes the procedure for type II testing, as referred to in Part A of Annex V to Regulation (EU) No 168/2013, designed to ensure the requisite measurement of emissions during roadworthiness testing. The purpose of the requirements laid down in this Annex is to demonstrate that the approved vehicle complies with the requirements laid down in Directive 2009/40/EC (1).

  • 2. 
    Scope

2.1.   During the environmental performance type-approval process, it shall be demonstrated to the technical service and approval authority that the L-category vehicles falling within the scope of Regulation (EU) No 168/2013 comply with the test type II requirements.

2.2.   Vehicles equipped with a propulsion type of which a positive ignition combustion engine forms part shall be subject only to a type II emission test as set out in points 3, 4 and 5.

2.3.   Vehicles equipped with a propulsion type of which a compression ignition combustion engine forms part shall be subject only to a type II free acceleration emission test as set out in points 3, 6 and 7. In this case point 3.8. is not applicable.

  • 3. 
    General conditions of type II emission testing

3.1.   A visual inspection of any emission-control equipment shall be conducted prior to start of the type II emission test in order to check that the vehicle is complete, in a satisfactory condition and that there are no leaks in the fuel, air supply or exhaust systems. The test vehicle shall be properly maintained and used.

3.2.   The fuel used to conduct the type II test shall be the reference fuel, specifications for which are given in Appendix 2 of Annex II in accordance with the requirements set out in Part B of Annex V of Regulation (EU) No 168/2013.

3.3.   During the test, the environmental temperature shall be between 293,2 K and 303,2 K (20 °C and 30 °C).

3.4.   In the case of vehicles with manually-operated or semi-automatic-shift gearboxes, the test type II test shall be carried out with the gear lever in the ‘neutral’ position and the clutch engaged.

3.5.   In the case of vehicles with automatic-shift gearboxes, the idle type II test shall be carried out with the gear selector in either the ‘neutral’ or the ‘park’ position. Where an automatic clutch is also fitted, the driven axle shall be lifted up to a point at which the wheels can rotate freely.

3.6.   The type II emission test shall be conducted immediately after the type I emission test. In any event, the engine shall be warmed up until all coolant and lubricant temperatures and lubricant pressure have reached equilibrium at operational levels.

3.7.   The exhaust outlets shall be provided with an air-tight extension, so that the sample probe used to collect exhaust gases may be inserted at least 60 cm into the exhaust outlet without increasing the back pressure of more than 125 mm H2O and without disturbing operation of the vehicle. This extension shall be so shaped as to avoid any appreciable dilution of exhaust gases in the air at the location of the sample probe. Where a vehicle is equipped with an exhaust system with multiple outlets, either these shall be joined to a common pipe or the carbon monoxide content shall be collected from each of them and an arithmetical average taken.

3.8.   The emission test equipment and analysers to perform the type II testing shall be regularly calibrated and maintained. A flame ionisation detection or NDIR analyser may be used for measuring hydrocarbons.

3.9.   The vehicles shall be tested with the fuel-consuming engine running.

 

3.9.1.

The manufacturer shall provide a type II test ‘service mode’ that makes it possible to inspect the vehicle for roadworthiness tests on a running fuel-consuming engine, in order to determine its performance in relation to the data collected. Where this inspection requires a special procedure, this shall be detailed in the service manual (or equivalent media). That special procedure shall not require the use of special equipment other than that provided with the vehicle.

  • 4. 
    Test type II – description of test procedure to measure tailpipe emissions at (increased) idle and free acceleration

4.1   Components for adjusting the idling speed

 

4.1.1.

Components for adjusting the idling speed for the purposes of this Annex refer to controls for changing the idling conditions of the engine which may be easily operated by a mechanic using only the tools referred to in point 4.1.2. In particular, devices for calibrating fuel and air flows are not considered as adjustment components if their setting requires the removal of the set-stops, an operation which can normally be performed only by a professional mechanic.

 

4.1.2.

The tools which may be used to adjust the idling speed are screwdrivers (ordinary or cross-headed), spanners (ring, open-end or adjustable), pliers, Allen keys and a generic scan tool.

4.2   Determination of measurement points and type II idle test pass/fail criteria

 

4.2.1.

First, a measurement is taken at the setting in accordance with the conditions fixed by the manufacturer.

 

4.2.2.

For each adjustment component with a continuous variation, a sufficient number of characteristic positions shall be determined. The test shall be carried out with the engine at normal idling speed and at ‘high idle’ speed. High idle engine speed is defined by the manufacturer but it must be higher than 2 000 min–1.

 

4.2.3.

The measurement of the carbon monoxide content of exhaust gases shall be carried out for all the possible positions of the adjustment components, but for components with a continuous variation only for the positions referred to in point 4.2.2.

 

4.2.4.

The type II idle test shall be considered passed if one or both of the following conditions is met:

 

4.2.4.1.

the values measured in accordance with point 4.2.3. shall be in compliance with the requirements set out in points 8.2.1.2. of Annex II to Directive 2009/40/EC;

 

4.2.4.1.1.

if point 8.2.1.2. (a) is selected by the manufacturer, the specific CO level given by the manufacturer shall be entered on the certificate of conformity;

 

4.2.4.1.2.

If point 8.2.1.2. (b) (ii) is selected by the manufacturer, the highest CO limits (at engine idle: 0,5 %, at high idle: 0,3 %) shall apply. Footnote (6) to point 8.2.1.2. (b) (ii) shall not be applicable for vehicles in the scope of Regulation (EU) No 168/2013. The measured CO value in the Type II test procedure shall be entered on the certificate of conformity;

 

4.2.4.2.

the maximum content obtained by continuously varying each of the adjustment components in turn while all other components are kept stable shall not exceed the limit value referred to in point 4.2.4.1.

 

4.2.5.

The possible positions of the adjustment components shall be limited by any of the following:

 

4.2.5.1.

the larger of the following two values: the lowest idling speed which the engine can reach; the speed recommended by the manufacturer, minus 100 revolutions per minute;

 

4.2.5.2.

the smallest of the following three values:

 

(a)

the highest rotation speed which the crankshaft of the engine can attain by activation of the idling speed components;

 

(b)

the rotation speed recommended by the manufacturer, plus 250 revolutions per minute;

 

(c)

the cut-in rotation speed of automatic clutches.

 

4.2.6.

Settings incompatible with the correct running of the engine shall not be adopted as measurement settings. In particular, if the engine is equipped with several carburettors, all the carburettors shall have the same setting.

4.3.   The following parameters shall be measured and recorded at normal idling speed and at high idle speed:

 

(a)

the carbon monoxide (CO) content by volume of the exhaust gases emitted (in vol %);

 

(b)

the carbon dioxide (CO2) content by volume of the exhaust gases emitted (in vol %);

 

(c)

hydrocarbons (HC) in ppm;

 

(d)

the oxygen (O2) content by volume of the exhaust gases emitted (in vol %) or lambda, as chosen by the manufacturer;

 

(e)

the engine speed during the test, including any tolerances;

 

(f)

the engine oil temperature at the time of the test. Alternatively, for liquid cooled engines, the coolant temperature shall be acceptable.

 

4.3.1.

With respect to the parameters under point 4.3. (d) the following shall apply:

 

4.3.1.1.

the measurement shall only be conducted at high idle engine speed;

 

4.3.1.2.

vehicles in the scope of this measurement are only those equipped with a closed loop fuel system;

 

4.3.1.3.

exemptions for vehicle with:

 

4.3.1.3.1.

engines equipped with a mechanically-controlled (spring, vacuum) secondary air system;

 

4.3.1.3.2.

two-stroke engines operated on a mix of fuel and lubrication oil.

  • 5. 
    CO concentration calculation in the type II idle test

5.1.   The CO (CCO) and CO2 (CCO2 ) concentration shall be determined from the measuring instrument readings or recordings, by use of appropriate calibration curves.

5.2.   The corrected concentration for carbon monoxide is:

Equation 2-1:

Formula

5.3.   The CCO concentration (see point 5.1.) shall be measured in accordance with the formulae in point 5.2. and does not need to be corrected if the total of the concentrations measured (CCO + CCO2 ) is at least:

 

(a)

for petrol (E5): 15 percent;

 

(b)

for LPG: 13,5 percent;

 

(c)

for NG/biomethane: 11,5 percent.

6   Test type II – free acceleration test procedure

6.1.   The combustion engine and any turbocharger or super-charger fitted shall be running at idle before the start of each free acceleration test cycle.

6.2.   To initiate each free acceleration cycle, the throttle pedal shall be fully depressed quickly and continuously (in less than one second) but not violently, so as to obtain maximum delivery from the fuel pump.

6.3.   During each free acceleration cycle, the engine shall reach cut-off speed or, for vehicles with automatic transmissions, the speed specified by the manufacturer or, if this data is not available, two-thirds of the cut-off speed, before the throttle is released. This could be checked, for instance, by monitoring engine speed or by allowing at least two seconds elapsing between initial throttle depression and release.

6.4.   For vehicles equipped with CVT and automatic clutch, the driven wheels may be lifted from the ground.

For engines with safety limits in the engine control (e.g. max 1 500 rpm without running wheels or without gear), this maximum engine speed shall be reached.

6.5.   The average concentration level of the particulate matter (in m–1) in the exhaust flow (opacity) shall be measured during five free acceleration tests. Opacity means an optical measurement of the density of particulate matter in the exhaust flow of an engine, expressed in m–1;

7   Test type II – free acceleration test results and requirements

7.1.   The test value measured in accordance with point 6.5 shall be in compliance with the requirements laid down in point 8.2.2.2. (b) of Annex II to Directive 2009/40/EC.

 

7.1.1.

Footnote (7) to point 8.2.2.2. (b) shall not be applicable for vehicles in the scope of Regulation (EU) No 168/2013.

 

7.1.2.

The measured type II opacity test value shall be entered on the certificate of conformity. Alternatively the vehicle manufacturer may specify the appropriate opacity level and enter this limit on the certificate of conformity.

 

7.1.3.

Vehicles in the scope of Regulation (EU) No 168/2013 are exempted from the requirement to enter the opacity test value on the statutory plate.

 

ANNEX IV

Test type III requirements: emissions of crankcase gases

  • 1. 
    Introduction

This Annex describes the procedure for type III testing, as referred to in Part A of Annex V to Regulation (EU) No 168/2013.

  • 2. 
    General provisions
 

2.1.

The manufacturer shall provide the approval authority with technical details and drawings to prove that the engine is or engines are so constructed as to prevent any fuel, lubrication oil or crankcase gases from escaping to the atmosphere from the crankcase gas ventilation system.

 

2.2.

Only in the following cases shall the technical service and approval authority require the manufacturer to carry out the type III test:

 

2.2.1.

for new vehicle types with regard to environmental performance equipped with a new design of the crankcase gas ventilation system, in which case a parent vehicle, with a crankcase gas ventilation concept representative of that approved, may be selected if the manufacturer so chooses to demonstrate to the satisfaction of the technical service and approval authority that the type III test has been passed;

 

2.2.2.

if there is any doubt that any fuel, lubrication oil or crankcase gases might escape to the atmosphere from the crankcase gas ventilation system, the technical service and the approval authority may require the manufacturer to conduct the type III test in accordance with point 4.1 or 4.2 (as chosen by the manufacturer).

 

2.3.

In all other cases, the type III test shall be waived.

 

2.4.

L-category vehicles equipped with a two-stroke engine containing a scavenging port between the crank case and the cylinder(s) may be exempted from the type III test requirements at the request of the manufacturer.

 

2.5.

The manufacturer shall attach a copy of the test report on the parent vehicle with the positive result from the type III test to the information folder provided for in Article 27 of Regulation (EU) No 168/2013.

  • 3. 
    Test conditions
 

3.1.

The type III test shall be carried out on a test vehicle which has been subjected to the type I testing in Annex II and the type II testing in Annex III.

 

3.2.

The vehicle tested shall have a leak-proof engine or leak-proof engines of a type other than those so designed that even a slight leak may cause unacceptable operating faults. The test vehicle shall be properly maintained and used.

  • 4. 
    Test methods

4.1.   The type III test shall be conducted according to the following test procedure:

4.1.1.   Idling shall be regulated in conformity with the manufacturer’s recommendations.

4.1.2.   Measurements shall be taken in the following sets of conditions of engine operation:

Table 3-1

Idle operation or steady state vehicle test speeds and power absorbed by the chassis dynamometer during the type III test

 

Condition number

Vehicle speed (km/h)

1

Idling

2

Highest of:

 

(a)

50 ±2 (in 3rd gear or ‘drive’) or

 

(b)

if (a) not achievable, 50 % of max. design vehicle speed.

3

 

Condition number

Power absorbed by the brake

1

Nil

2

That corresponding to the setting for type I test at 50 km/h or if not achievable type I test at 50 % of max. design vehicle speed.

3

As for condition 2, multiplied by a factor of 1,7

4.1.3.   For all operation conditions listed in point 4.1.2., the reliable functioning of the crankcase ventilation system shall be checked.

4.1.4.   Method of verification of the crankcase ventilation system

 

4.1.4.1.

The engine’s apertures shall be left as found.

 

4.1.4.2.

The pressure in the crankcase shall be measured at an appropriate location. It may be measured at the dip-stick hole with an inclined-tube manometer.

 

4.1.4.3.

The vehicle shall be deemed satisfactory if, in every condition of measurement defined in point 4.1.2., the pressure measured in the crankcase does not exceed the atmospheric pressure prevailing at the time of measurement.

4.1.5.   For the test method described in points 4.1.4.1. to 4.1.4.3., the pressure in the intake manifold shall be measured to within ±1 kPa.

4.1.6.   The vehicle speed as indicated at the dynamometer shall be measured to within ± 2 km/h.

4.1.7.   The pressures measured in the crankcase and the ambient pressure shall be measured to within ± 0,1 kPa and shall be sampled with a frequency ≥ 1 Hz within a time period of ≥ 60 s when the conditions in point 4.1.2. are continuously operated and stabilised.

4.2.   If, in one or more of the conditions of measurement in point 4.1.2., the highest pressure value measured in the crankcase within the time period in point 4.1.7. exceeds the atmospheric pressure, an additional test as defined in point 4.2.1. or 4.2.3. (as chosen by the manufacturer) shall be performed to the satisfaction of the approval authority.

4.2.1.   Additional type III test method (No 1)

 

4.2.1.1.

The engine’s apertures shall be left as found.

 

4.2.1.2.

A flexible bag impervious to crankcase gases and having a capacity of approximately five litres shall be connected to the dipstick hole. The bag shall be empty before each measurement.

 

4.2.1.3.

The bag shall be closed before each measurement. It shall be opened to the crankcase for five minutes for each condition of measurement prescribed in point 4.1.2.

 

4.2.1.4.

The vehicle shall be deemed satisfactory if, in every condition of measurement defined in points 4.1.2. and 4.2.1.3., no visible inflation of the bag occurs.

4.2.2.   If the structural layout of the engine is such that the test cannot be performed by the methods described in point 4.2.1., the measurements shall be effected by that method modified as follows:

 

4.2.2.1.

Before the test, all apertures other than that required for the recovery of the gases shall be closed;

 

4.2.2.2.

The bag shall be placed on a suitable take-off which does not introduce any additional loss of pressure and is installed on the recycling circuit of the device directly at the engine-connection aperture.

 

4.2.2.3.

Figure 3-1

Various test set-ups for type III test method No 1

Image

4.2.3.   Alternative additional type III test method (No 2)

 

4.2.3.1.

The manufacturer shall prove to the approval authority that the crankcase ventilation system of the engine is leak-tight by performing a leak check with compressed air inducing an overpressure in the crankcase ventilation system.

 

4.2.3.2.

The engine of the vehicle may be installed on a test rig and the intake and exhaust manifolds may be removed and replaced with plugs that hermetically seal the air intake and exhaust evacuation openings of the engine. Alternatively, the intake and exhaust systems may be plugged on a representative test vehicle on locations chosen by the manufacturer and to the satisfaction of the technical service and approval authority.

 

4.2.3.3.

The crankshaft may be rotated to optimise the position of the pistons, minimising pressure loss to the combustion chamber(s).

 

4.2.3.4.

The pressure in the crankcase system shall be measured at an appropriate location other than the opening to the crankcase system used to pressurise the crankcase. When present, the oil fill cap, drain plug, level check port and dipstick cap may be modified to facilitate the pressurisation and pressure measurement; however, all seals between the screw-thread, gaskets, O-rings and other (pressure) seals of the engine shall remain intact and representative of the engine type. Ambient temperature and pressure shall remain constant throughout the test.

 

4.2.3.5.

The crankcase system shall be pressurised with compressed air to the maximum recorded peak pressure as monitored during the three test conditions specified in point 4.1.2. and at least to a pressure of 5 kPa over ambient pressure or to a higher pressure at the choice of the manufacturer. The minimum pressure of 5 kPa shall be allowed only if it can be demonstrated by means of traceable calibration that test equipment has accurate resolution for testing at that pressure. A higher test pressure shall be used otherwise, according to the equipment’s calibrated resolution.

 

4.2.3.5.

The compressed air source inducing the overpressure shall be closed and the pressure in the crankcase shall be monitored for 300 seconds. The test pass condition shall be: crankcase pressure ≥ 0,95 times the initial overpressure for 300 seconds after closure of the compressed air source.

ANNEX V

Test type IV requirements: evaporative emissions

 

Appendix Number

Appendix title

Page

1

Fuel storage permeability test procedure

168

2

Fuel storage and delivery system permeation test procedure

169

3

Sealed Housing for Evaporation Determination (SHED) test procedure

174

3.1.

Preconditioning requirements for a hybrid application before start of the SHED test

181

3.2.

Ageing test procedure for evaporative emission control devices

183

4

Calibration of equipment for evaporative emission testing

185

  • 1. 
    Introduction
 

1.1.

This Annex describes the procedure for type IV testing, as referred to in Part A of Annex V to Regulation (EU) No 168/2013.

 

1.2.

Appendix 1 describes the procedure for testing the permeability of non-metallic fuel tank material and shall also be used as preconditioning test cycle for fuel storage testing referred to in Number C8 of Annex II to Regulation (EU) No 168/2013.

 

1.3.

Appendices 2 and 3 describe methods for the determination of the loss of hydrocarbons by evaporation from the fuel systems of vehicles equipped with a propulsion type that uses volatile, liquid fuel. Appendix 4 sets out the calibration procedure for evaporative emission test equipment.

  • 2. 
    General requirements
 

2.1.

The vehicle manufacturer shall prove to the technical service and to the satisfaction of the approval authority that the fuel tank and fuelling system are leak-tight.

 

2.2.

The fuelling system tightness shall comply with the requirements referred to in Annex II (C8) to Regulation (EU) No 168/2013.

 

2.3.

All L-vehicle (sub-)categories equipped with a non-metallic fuel storage shall be tested according to the permeability test procedure laid down in Appendix 1. At the request of the manufacturer, the fuel permeation test set out in Appendix 2 or the SHED test set out in Appendix 3 may replace the evaporative part of the permeability test set out in Appendix 1.

 

2.4.

L-vehicle (sub-)categories L3e, L4e, L5e-A, L6e-A and L7e-A shall be tested according to the SHED test procedure laid down in Appendix 3.

 

2.5.

The fuel permeation test procedure set out in Appendix 2 shall be subject to the general assessment in the environmental effect study referred to in point 5(b) of Article 23 of Regulation (EU) No 168/2013. This study shall confirm whether L-vehicle (sub-)categories L1e-A, L1e-B, L2e, L5e-B, L6e-B, L7e-B and L7e-C shall be tested either according to the permeation test procedure set out in Appendix 2 or the SHED test procedure set out in Appendix 3.

 

2.6.

If an L1e-A, L1e-B, L2e, L5e-B, L6e-B, L7e-B and L7e-C vehicle is to be subject to a SHED test procedure set out in Part C of Annex VI to Regulation (EU) No 168/2013 and in Appendix 3, it shall be exempted from the fuel permeation test procedure set out in Appendix 2 and vice versa.

Appendix 1

Fuel storage permeability test procedure

  • 1. 
    Scope

1.1.   This requirement shall apply to all L-category vehicles equipped with a non-metallic fuel tank to store liquid, volatile fuel, as applicable for vehicles equipped with a positive ignition combustion engine.

1.2.   Vehicles complying with the requirements set out in Appendix 2 or 3 or vehicles equipped with a compression ignition engine using low volatile fuel shall comply with the requirements of this Appendix only as preconditioning procedure for fuel storage testing referred to in Number C8 of Annex II to Regulation (EU) No 168/2013. The fuel tanks on those vehicles are exempted from the evaporative requirements set out in points 2.1.5, 2.1.6, 2.3. and 2.4.

  • 2. 
    Fuel tank permeability test

2.1.   Test method

2.1.1.   Test temperature

The fuel tank shall be tested at a temperature of 313,2 ± 2 K (40 ± 2 °C).

2.1.2.   Test fuel

The test fuel to be used shall be the reference fuel set out in Appendix 2 of Annex II. If this test procedure is used only as preconditioning for subsequent fuel storage testing referred to in Number C8 of Annex II to Regulation (EU) No 168/2013, a commercial premium-grade fuel may be used at the choice of the manufacturer and to the satisfaction of the approval authority.

2.1.3.   The tank is filled with the test fuel up to 50 % of its total rated capacity and allowed to rest in the ambient air at a temperature of 313,2 ± 2 K until there is a constant weight loss. That period shall be at least four weeks (pre-storage period). The tank is emptied and then refilled with test fuel to 50 % of its rated capacity.

2.1.4.   The tank is stored under the stabilising conditions at a temperature of 313,2 ± 2 K until its contents are at the test temperature. The tank is then sealed. The pressure rise in the tank during the test may be compensated.

2.1.5.   The weight loss due to diffusion shall be measured during the eight-week test. During that period, a maximum quantity of 20 000 mg may escape from the fuel tank, on average, every 24 hours.

2.1.6.   If the diffusion losses are greater, the fuel loss shall also be determined at a test temperature of 296,2 ± 2 K (23 ± 2 °C), all other conditions being maintained (pre-storage at 313,2 ± 2 K). The loss determined under those conditions shall not exceed 10 000 mg per 24 hours.

2.2.   All fuel tanks that will undergo this test procedure as preconditioning for testing referred to in Number C8 of Annex II to Regulation (EU) No 168/2013 shall be duly identified.

2.3.   The permeability evaporation test results shall not be averaged between the different tested fuel tanks, but the worst-case diffusion loss rate observed of any one of those fuel tanks shall be taken and compared against the maximum permitted loss rate set out in point 2.1.5 and, if applicable, in point 2.1.6.

2.4.   Fuel tank permeability test conducted with internal pressure compensation

If the fuel tank permeability test is conducted with internal pressure compensation, which shall be noted in the test report, the fuel loss resulting from the pressure compensation shall be taken into account when the diffusion loss is calculated.

Appendix 2

Fuel storage and delivery system permeation test procedure

1   Scope and test limits

1.1.   As of the date of first application laid down in Annex IV to Regulation (EU) No 168/2013, fuel system permeation shall be tested in accordance with the test procedure laid down in point 2. This base requirement shall apply to all L-category vehicles equipped with a fuel tank to store liquid, high volatile fuel, as applicable for a vehicle equipped with a positive ignition combustion engine, in accordance with Part B of Annex V to Regulation (EU) No 168/2013 and pending the results of the environmental effect study laid down in Article 23 of Regulation (EU) No 168/2013.

1.2.   For the purposes of the requirements of this Appendix, the minimum fuel system components falling within the scope of this Appendix consist of a fuel storage tank and fuel line sub-assembly. Other components that form part of the fuel delivery system, fuel metering and control system are not subject to the requirements of this Appendix.

  • 2. 
    Description of the fuel tank permeation test

2.1   Measure permeation emissions by weighing a sealed fuel tank before and after a temperature-controlled soak according to the following flow charts

Figure Ap2-1

Fuel tank permeation full and short tests

Image

2.2.   Metallic tanks are exempted from durability testing.

  • 3. 
    Preconditioning fuel soak for the fuel tank permeation test

To precondition the fuel tank in the fuel tank permeation test, the following five steps shall be followed:

3.1.   The tank shall be filled with reference fuel specified in Appendix 2 to Annex II, and sealed. The filled tank shall be soaked at an ambient temperature of 301,2 ± 5 K (28 ± 5 °C) for 20 weeks or at 316,2 ± 5 K (43 ± 5 °C) for ten weeks. Alternatively, a shorter period of time at a higher -temperature may be used as soak time if the manufacturer can prove to the approval authority that the hydrocarbon permeation rate has stabilised.

3.2.   The fuel tank’s internal surface area shall be determined in square metres accurate to at least three significant figures. The manufacturer may use less accurate estimates of the surface area if it is ensured that the surface area will not be overestimated.

3.3.   The fuel tank shall be filled with the reference fuel to its nominal capacity.

3.4.   The tank and fuel shall equilibrate to 301,2 ± 5 K (28 ± 5 °C) or 316,2 ± 5 K (43 ± 5 °C) in the case of the alternative short test.

3.5.   The fuel tank shall be sealed using fuel caps and other fittings (excluding petcocks) that can be used to seal openings in a production fuel tank. In cases where openings are not normally sealed on the fuel tank (such as hose-connection fittings and vents in fuel caps), these openings may be sealed using non-permeable fittings such as metal or fluoropolymer plugs.

  • 4. 
    Fuel tank permeation test procedure

To run the test, the following steps shall be taken for a tank preconditioned as specified in point 3.

4.1.   Weigh the sealed fuel tank and record the weight in mg. This measurement shall be taken within eight hours of filling of the tank with test fuel.

4.2.   The tank shall be placed in a ventilated, temperature-controlled room or enclosure.

4.3.   The test room or enclosure shall be closed and sealed and the test time shall be recorded.

4.4.   The test room or enclosure temperature shall be continuously maintained at 301,2 ± 2 K (28 ± 5 °C) for 14 days. This temperature shall be continuously monitored and recorded.

  • 5. 
    Fuel tank permeation test result calculation

5.1.   At the end of the soak period, the weight in mg of the sealed fuel tank shall be recorded. Unless the same fuel is used in the preconditioning fuel soak and the permeation test run, weight measurements shall be recorded on five separate days per week of testing. The test is void if a linear plot of tank weight vs. test days for the full soak period for permeation testing yields a linear regression correlation coefficient r2 < 0,8.

5.2.   The weight of the filled fuel tank at the end of the test shall be subtracted from the weight of the filled fuel tank at the beginning of the test.

5.3.   The difference in mass shall be divided by the internal surface area of the fuel tank.

5.4.   The result of the calculation under point 5.3., expressed in mg/m2, shall be divided by the number of test days to calculate the mg/m2/day emission rate and rounded to the same number of decimal places as the emission standard laid down in Part C2 of Annex VI to Regulation (EU) No 168/2013.

5.5.   In cases where permeation rates during a soak period of 14 days are such that the manufacturer considers that period not long enough to be able to measure significant weight changes, the period may be extended by a maximum of 14 additional days. In this case, the test steps in points 4.5 to 4.8 shall be repeated to determine the weight change for the full 28 days.

5.6.   Determination of the deterioration factor when applying the full permeation test procedure

The deterioration factor (DF) shall be determined from any of the following at the choice of the manufacturer:

 

5.6.1.

the ratio between the final permeation and baseline test runs;

 

5.6.2.

the fixed DF for total hydrocarbons laid down in Part B of Annex VII to Regulation (EU) No 168/2013.

5.7.   Determination of the final tank permeation test results

5.7.1.   Full test procedure

To determine the permeation test result, the deterioration factor determined in point 5.6. shall be multiplied by the measured permeation test result determined in point 5.4. The product of multiplication shall be no greater than the applicable permeation test limit set out in Part C2 of Annex VI to Regulation (EU) No 168/2013.

5.7.2.   Accelerated (short) test procedure

The measured permeation test result determined in point 5.4 shall be no greater than the applicable permeation test limit set out in Part C2 of Annex VI to Regulation (EU) No 168/2013.

  • 6. 
    Fuel tank durability testing

6.1.   A separate durability demonstration for each substantially different combination of treatment approaches and non-metallic tank materials shall be performed by taking the following steps:

6.1.1.   Pressure cycling

A pressure test shall be conducted by sealing the tank and cycling it between 115,1 kPa absolute pressure(+ 2,0 psig) and 97,9 kPa absolute pressure (– 0,5 psig) and back to 115,1 kPa absolute pressure(+ 2,0 psig) for 10 000 cycles at a rate of 60 seconds per cycle.

6.1.2.   UV exposure

A sunlight exposure test shall be conducted by exposing the fuel tank to an ultraviolet light of at least 24 W/m2 (0,40 W-hr/m2/min) on the tank surface for at least 450 hours. Alternatively, the non-metallic fuel tank may be exposed to direct natural sunlight for an equivalent period of time, as long as it is ensured that it is exposed to at least 450 daylight hours.

6.1.3.   Slosh testing

A slosh test shall be conducted by filling the non-metallic fuel tank to 40 percent of its capacity with the reference fuel set out in Appendix 2 to Annex II or with a commercial premium-grade fuel at the choice of the manufacturer and to the satisfaction of the approval authority. The fuel tank assembly shall be rocked at a rate of 15 cycles per minute until one million total cycles are reached. An angle deviation of + 15° to – 15° from level shall be used and the slosh test shall be conducted at an ambient temperature of 301,2 ± 5 K (28 ± 5 °C).

6.2.   Final fuel tank durability test results

Following the durability testing, the fuel tank shall be soaked according to the requirements of point 3 to ensure that the permeation rate is stable. The period of slosh testing and the period of ultraviolet testing may be considered to be part of this soak, provided that the soak begins immediately after the slosh testing. To determine the final permeation rate, the fuel tank shall be drained and refilled with fresh test fuel as set out in Appendix 2 to Annex II. The permeation test run laid down in point 4 shall be repeated immediately after this soak period. The same test fuel requirement shall be used for this permeation test run as for the permeation test run conducted prior to the durability testing. The final test results shall be calculated in accordance with point 5.

6.3.   The manufacturer may request that any of the durability tests be excluded if it can be clearly demonstrated to the approval authorities that this does not affect the emissions from the fuel tank.

6.4.   The length of ‘soak’ during durability testing may be included in the fuel soak period provided that fuel remains in the tank. Soak periods may be shortened to ten weeks if performed at 316,2 ± 5 K (43 ± 5 °C).

  • 7. 
    Fuel line assembly test requirements

7.1.   Fuel line assembly permeation physical testing procedure

The manufacturer shall conduct a fuel line assembly test, including the fuel hose clamps and the material to which the fuel lines are connected on both sides, by performing a physical test in accordance with any of the following test procedures:

 

(a)

in accordance with the requirements of points 6.2 to 6.4. The piping material to which the fuel lines are connected at both sides of the fuel line shall be plugged with impermeable material. The words ‘fuel tank’ in points 6.2 to 6.4 shall be replaced with ‘fuel-line assembly’. The fuel hose clamps shall be tightened with the torque specified for series production;

 

(b)

the manufacturer may use a proprietary test procedure if it can be demonstrated to the approval authority that this test is just as severe as test method (a).

7.2.   Fuel line assembly permeation test limits in the case of physical testing

The test limits for fuel tubing in Part C2 of Annex VI to Regulation (EU) No 168/2013 shall be met when conducting the test procedures laid down in point 7.1.

7.3.   Physical testing of fuel-line assembly permeation is not required if:

 

(a)

the fuel lines meet the R11–A or R12 permeation specifications in SAE J30, or

 

(b)

non-metallic fuel lines meet the Category 1 specifications for permeation in SAE J2260, and

 

(c)

the manufacturer can demonstrate to the approval authority that the connections between the fuel tank and other fuel system components are leak-tight thanks to robust design.

If the fuel hoses fitted on the vehicle meet all three specifications, the fuel tubing test limit requirements in Part C2 of Annex VI to Regulation (EU) No 168/2013 shall be considered as fulfilled.

Appendix 3

Sealed Housing for Evaporation Determination (SHED) test procedure

  • 1. 
    Scope
 

1.1.

As of the application date laid down in Annex IV to Regulation (EU) No 168/2013, the evaporative emissions of sub-category L3e, L4e (only the base, original L3e vehicle of the motorcycle with side-car), L5e-A, L6e-A and L7e-A vehicles shall be tested in the environmental performance type-approval procedure according to the following SHED test procedure.

  • 2. 
    Description of SHED test

The evaporative emission SHED test (Figure Ap3-1) consists of a conditioning phase and a test phase, as follows:

 

(a)

conditioning phase:

 

driving cycle;

 

vehicle soak;

 

(b)

test phase:

 

diurnal (breathing loss) test;

 

driving cycle;

 

hot soak loss test.

Mass emissions of hydrocarbons from the tank breathing loss and the hot soak loss phases are added together to provide an overall result for the test.

Figure Ap3-1

Flow chart – evaporative emission SHED test

Image

  • 3. 
    Test vehicles and test fuel requirement

3.1.   Test vehicles

The SHED test shall be conducted at the choice of the manufacturer with one or more degreened test vehicles equipped with:

 

3.1.1.

degreened emission control devices; a fixed deterioration factor of 0,3 g/test shall be added to the SHED test result;

 

3.1.2.

aged evaporative emission control devices; the ageing test procedure set-out in sub-appendix 3.2. shall apply.

3.2.   Test vehicles

The degreened test vehicle, which shall be representative of the vehicle type with regard to environmental performance to be approved, shall be in good mechanical condition and, before the evaporative test, have been run in and driven at least 1 000 km after first start on the production line. The evaporative emission-control system shall be connected and functioning correctly over this period and the carbon canister and evaporative emission control valve subjected to normal use, undergoing neither abnormal purging nor abnormal loading.

3.3.   Test fuel

The appropriate test fuel, as defined in Appendix 2 to Annex II, shall be used.

  • 4. 
    Chassis dynamometer and evaporative emissions enclosure

4.1.   The chassis dynamometer shall meet the requirements of Appendix 3 of Annex II.

4.2.   Evaporative emission measurement enclosure (SHED)

The evaporative emission measurement enclosure shall be a gas-tight rectangular measuring chamber able to contain the vehicle under test. The vehicle shall be accessible from all sides when inside and the enclosure when sealed shall be gas-tight. The inner surface of the enclosure shall be impermeable to hydrocarbons. At least one of the surfaces shall incorporate a flexible impermeable material or other device to allow the equilibration of pressure changes resulting from small changes in temperature. Wall design shall be such as to promote good dissipation of heat.

4.3.   Analytical systems

4.3.1.   Hydrocarbon analyser

 

4.3.1.1.

The atmosphere within the chamber is monitored using a hydrocarbon detector of the flame ionisation detector (FID) type. Sample gas shall be drawn from the midpoint of one side wall or the roof of the chamber and any bypass flow shall be returned to the enclosure, preferably to a point immediately downstream of the mixing fan.

 

4.3.1.2.

The hydrocarbon analyser shall have a response time to 90 % of final reading of less than 1,5 seconds. Its stability shall be better than 2 % of full scale at zero and at 80 ± 20 % of full scale over a 15-minute period for all operational ranges.

 

4.3.1.3.

The repeatability of the analyser expressed as one standard deviation shall be better than 1 % of full scale deflection at zero and at 80 ± 20 % of full scale on all ranges used.

 

4.3.1.4.

The operational ranges of the analyser shall be chosen to give best resolution over the measurement, calibration and leak-checking procedures.

4.3.2.   Hydrocarbon analyser data recording system

 

4.3.2.1.

The hydrocarbon analyser shall be fitted with a device to record electrical signal output either by strip chart recorder or other data-processing system at a frequency of at least once per minute. The recording system shall have operating characteristics at least equivalent to the signal being recorded and shall provide a permanent record of results. The record shall show a positive indication of the beginning and end of the fuel tank heating and hot soak periods together with the time elapsed between start and completion of each test.

4.4.   Fuel tank heating

4.4.1.   The fuel tank heating system shall consist of two separate heat sources with two temperature controllers. Typically, the heat sources will be electric heating strips, but other sources may be used at the request of the manufacturer. Temperature controllers may be manual, such as variable transformers, or automated. Since vapour and fuel temperature are to be controlled separately, an automatic controller is recommended for the fuel. The heating system shall not cause hot-spots on the wetted surface of the tank which would cause local overheating of the fuel. Heating strips for the fuel should be located as low as practicable on the fuel tank and shall cover at least 10 % of the wetted surface. The centre line of the heating strips shall be below 30 % of the fuel depth as measured from the bottom of the fuel tank, and approximately parallel to the fuel level in the tank. The centre line of the vapour heating strips, if used, shall be located at the approximate height of the centre of the vapour volume. The temperature controllers shall be capable of controlling the fuel and vapour temperatures to the heating function described in 5.3.1.6.

4.4.2.   With temperature sensors positioned as in point 4.5.2., the fuel heating device shall make it possible to evenly heat the fuel and fuel vapour in the tank in accordance with the heating function described in 5.3.1.6. The heating system shall be capable of controlling the fuel and vapour temperatures to ± 1,7 K of the required temperature during the tank heating process.

4.4.3.   Notwithstanding the requirements of point 4.4.2., if a manufacturer is unable to meet the heating requirement specified, due to use of thick-walled plastic fuel tanks for example, then the closest possible alternative heat slope shall be used. Prior to the commencement of any test, the manufacturer shall submit engineering data to the technical service to support the use of an alternative heat slope.

4.5.   Temperature recording

4.5.1.   The temperature in the chamber is recorded at two points by temperature sensors which are connected so as to show a mean value. The measuring points are extended approximately 0,1 m into the enclosure from the vertical centre line of each side wall at a height of 0,9 ± 0,2 m.

4.5.2.   The temperatures of the fuel and fuel vapour shall be recorded by means of sensors positioned in the fuel tank as described in point 5.1.1. When sensors cannot be positioned as specified in point 5.1.1, e.g. where a fuel tank with two ostensibly separate chambers is used, sensors shall be located at the approximate mid-volume of each fuel- or vapour-containing chamber. In this case, the average of these temperature readings shall constitute the fuel and vapour temperatures.

4.5.3.   Throughout the evaporative emission measurements, temperatures shall be recorded or entered into a data processing system at a frequency of at least once per minute.

4.5.4.   The accuracy of the temperature recording system shall be within ± 1,7 K and capable of resolving temperatures to 0,5 K.

4.5.5.   The recording or data processing system shall be capable of resolving time to ± 15 seconds.

4.6.   Fans

4.6.1.   It shall be possible to reduce the hydrocarbon concentration in the chamber to the ambient hydrocarbon level by using one or more fans or blowers with the SHED door(s) open.

4.6.2.   The chamber shall have one or more fans or blowers of likely capacity 0,1 to 0,5 m3/s with which to thoroughly mix the atmosphere in the enclosure. It shall be possible to attain an even temperature and hydrocarbon concentration in the chamber during measurements. The vehicle in the enclosure shall not be subjected to a direct stream of air from the fans or blowers.

4.7.   Gases

4.7.1.   The following pure gases shall be available for calibration and operation:

 

(a)

purified synthetic air (purity: < 1 ppm C1 equivalent < 1 ppm CO, < 400 ppm CO2, 0,1 ppm NO); oxygen content between 18 and 21 % by volume;

 

(b)

hydrocarbon analyser fuel gas (40 ± 2 % hydrogen, and balance helium with less than 1 ppm C1 equivalent hydrocarbon, less than 400 ppm CO2);

 

(c)

propane (C3H8), 99,5 % minimum purity.

4.7.2.   Calibration and span gases shall be available containing mixtures of propane (C3H8) and purified synthetic air. The true concentrations of a calibration gas shall be within ± 2 % of the stated figures. The accuracy of the diluted gases obtained when using a gas divider shall be to within ± 2 % of the true value. The concentrations specified in Appendix 1 may also be obtained by the use of a gas divider using synthetic air as the diluting gas.

4.8.   Additional equipment

4.8.1.   The relative humidity in the test area shall be measurable to within ± 5 %.

4.8.2.   The pressure within the test area shall be measurable to within ± 0,1 kPa.

4.9.   Alternative equipment

4.9.1.   At the request of the manufacturer and with the agreement of the approval authority, the technical service may authorise the use of alternative equipment provided that it can be demonstrated that it gives equivalent results.

  • 5. 
    Test procedure

5.1.   Test preparation

5.1.1.   The vehicle is mechanically prepared before the test as follows:

 

(a)

the exhaust system of the vehicle shall not exhibit any leaks;

 

(b)

the vehicle may be steam-cleaned before the test;

 

(c)

the fuel tank of the vehicle shall be equipped with temperature sensors so that the temperature of the fuel and fuel vapour in the fuel tank can be measured when it is filled to 50 % ± 2 % of its rated capacity;

 

(d)

additional fittings, adaptors or devices may optionally be fitted to allow a complete draining of the fuel tank. Alternatively, the fuel tank may be evacuated by means of a pump or siphon that prevents fuel spillage.

5.2.   Conditioning phase

5.2.1.   The vehicle shall be taken into the test area where the ambient temperature is between 293,2 K and 303,2 K (20 °C and 30 °C).

5.2.2.   The vehicle is placed on a chassis dynamometer and driven through the test cycle specified in Part A of Annex VI to Regulation (EU) No 168/2013 as appropriate for the class of vehicle being tested. Exhaust emissions may be sampled during this operation but the results shall not be used for the purpose of exhaust emission type-approval.

5.2.3.   The vehicle is parked in the test area for the minimum period stated in Table Ap3-1.

Table Ap3-1

SHED test – minimum and maximum soak periods

 

Engine capacity

Minimum (hours)

Maximum (hours)

≤ 169 cm3

6

36

170 cm3 < engine capacity ≤ 279 cm3

8

36

> 280 cm3

12

36

5.3.   Test phases

5.3.1.   Tank breathing (diurnal) evaporative emission test

 

5.3.1.1.

The measuring chamber shall be vented/purged for several minutes immediately before the test until a stable background is obtainable. The chamber mixing fan(s) shall be switched on at this time also.

 

5.3.1.2.

The hydrocarbon analyser shall be set to zero and spanned immediately before the test.

 

5.3.1.3.

The fuel tanks shall be emptied as described in point 5.1.1 and refilled with test fuel at a temperature of between 283,2 K and 287,2 K (10 °C and 14 °C) to 50 ± 2 % of its normal volumetric capacity.

 

5.3.1.4.

The test vehicle shall be brought into the test enclosure with the engine switched off and parked in an upright position. The fuel tank sensors and heating device shall be connected, if necessary. Immediately begin recording the fuel temperature and the air temperature in the enclosure. If a venting/purging fan is still operating, it shall be switched off at this time.

 

5.3.1.5.

The fuel and vapour may be artificially heated to the starting temperatures of 288,7 K (15,5 °C) and 294,2 K (21,0 °C) ± 1 K respectively.

 

5.3.1.6.

As soon as the fuel temperature reaches 287,0 K (14,0 °C):

 

(1)

Install the fuel filler cap(s);

 

(2)

Turn off the purge blowers, if not already off at that time;

 

(3)

Close and seal enclosure doors.

As soon as the fuel reaches a temperature of 288,7 K (15,5 °C) ± 1 K the test procedure shall continue as follows:

 

(a)

the hydrocarbon concentration, barometric pressure and the temperature shall be measured to give the initial readings CHC, i, Pi and Ti for the tank heat build test;

 

(b)

a linear heat build of 13,8 K or 20 ± 0,5 K over a period of 60 ± 2 minutes shall begin. The temperature of the fuel and fuel vapour during the heating shall conform to the result of equation Ap3-1 within ± 1,7 K, or the closest possible function as described in 4.4.3:

 
 

For exposed type fuel tanks:

Equations Ap3-1:

Formula

Formula

 
 

For non-exposed type fuel tanks:

Equations Ap3-2:

Formula

Formula

where:

 

Tf

=

required temperature of fuel (K);

Tv

=

required temperature of vapour (K);

t

=

time from start of the tank heat build in minutes.

 

5.3.1.7.

The hydrocarbon analyser is set to zero and spanned immediately before the end of the test.

 

5.3.1.8.

If the heating requirements in point 5.3.1.6. have been met over the 60 ± 2 minute period of the test, the final hydrocarbon concentration in the enclosure is measured (CHC,f). The time or elapsed time of this measurement is recorded, together with the final temperature and barometric pressure Tf and pf.

 

5.3.1.9.

The heat source is turned off and the enclosure door unsealed and opened. The heating device and temperature sensor are disconnected from the enclosure apparatus. The vehicle is now removed from the enclosure with the engine switched off.

 

5.3.1.10.

To prevent abnormal loading of the canister, fuel tank caps may be removed from the vehicle during the period between the end of the diurnal test phase and the start of the driving cycle. The driving cycle shall begin within 60 minutes of the completion of the breathing loss test.

5.3.2.   Driving cycle

 

5.3.2.1.

‘Tank breathing losses’ means hydrocarbon emissions caused by temperature changes in the fuel storage and supply. Following the tank breathing losses test, the vehicle is pushed or otherwise manoeuvred onto the chassis dynamometer with the engine switched off. It is then driven through the driving cycle specified for the class of vehicle on test. At the request of the manufacturer, exhaust emissions may be sampled during this operation, but the results shall not be used for the purpose of exhaust emission type-approval.

5.3.3.   Hot soak evaporative emissions test

The determination for evaporative emissions is concluded with the measurement of hydrocarbon emissions over a 60-minute hot soak period. The hot soak test shall begin within seven minutes of the completion of the driving cycle specified in point 5.3.2.1.

 

5.3.3.1.

Before the completion of the test run, the measuring chamber shall be purged for several minutes until a stable hydrocarbon background is obtained. The enclosure mixing fan(s) shall also be turned on at this time.

 

5.3.3.2.

The hydrocarbon analyser shall be set to zero and spanned immediately prior to the test.

 

5.3.3.3.

The vehicle shall be pushed or otherwise moved into the measuring chamber with the engine switched off.

 

5.3.3.4.

The enclosure doors are closed and sealed gas-tight within seven minutes of the end of the driving cycle.

 

5.3.3.5.

A 60 ± 0,5 minute hot soak period begins when the chamber is sealed. The hydrocarbon concentration, temperature and barometric pressure are measured to give the initial readings CHC, i. Pi and Ti for the hot soak test. These figures are used in the evaporative emission calculation shown in chapter 6.

 

5.3.3.6.

The hydrocarbon analyser shall be zeroed and spanned immediately before the end of the 60 ± 0,5 minute test period.

 

5.3.3.7.

At the end of the 60 ± 0,5 minute test period, measure the hydrocarbon concentration in the chamber. The temperature and the barometric pressure are also measured. These are the final readings CHC, f. pf and Tf for the hot soak test used for the calculation in chapter 6. This completes the evaporative emission test procedure.

5.4.   Alternative test procedures

5.4.1.   At the request of the manufacturer, with the agreement of the technical service and to the satisfaction of the approval authority, alternative methods may be used to demonstrate compliance with the requirements of this Appendix. In such cases, the manufacturer shall satisfy the technical service that the results from the alternative test can be correlated with those resulting from the procedure described in this Annex. This correlation shall be documented and added to the information folder provided for in Article 27 of Regulation (EU) No 168/2013.

  • 6. 
    Calculation of results

6.1.   The evaporative emission tests described in chapter 5 allow the hydrocarbon emissions from the tank breathing and hot soak phases to be calculated. Evaporative losses from each of these phases is calculated using the initial and final hydrocarbon concentrations, temperatures and pressures in the enclosure, together with the net enclosure volume.

The following formula shall be used:

Equation Ap3-3:

Formula

where:

 

MHC

=

mass of hydrocarbon emitted over the test phase (grams);

CHC

=

hydrocarbon concentration measured in the enclosure (ppm (volume) Ci equivalent);

V

=

net enclosure volume in cubic metres corrected for the volume of the vehicle. If the volume of the vehicle is not determined, a volume of 0,14 m3 shall be subtracted;

T

=

ambient chamber temperature in K;

p

=

barometric pressure in kPa;

H/C

=

hydrogen to carbon ratio;

Formula

where:

 
 

i is the initial reading;

 
 

f is the final reading;

 
 

H/C is taken to be 2,33 for tank breathing losses;

 
 

H/C is taken to be 2,20 for hot soak losses. ‘Hot soak losses’ means hydrocarbon emissions arising from the fuel system of a stationary vehicle after a period of driving (assuming a ratio of C1 H2,20 );

6.2.   Overall results of test

The overall evaporative hydrocarbon mass emission for the vehicle is taken to be:

Equation Ap3-4:

Formula

where:

 

Mtotal

=

overall evaporative mass emissions of the vehicle (grams);

MTH

=

evaporative hydrocarbon mass emission for the tank heat build (grams);

MHS

=

evaporative hydrocarbon mass emission for the hot soak (grams).

  • 7. 
    Limit values

When tested according to this Annex, overall evaporative hydrocarbon mass emission for the vehicle (Mtotal) shall be as specified in Part C of Annex VI to Regulation (EU) No 168/2013.

  • 8. 
    Further provisions

At the request of the manufacturer, evaporative emission approval shall be granted without testing if a California Executive Order for the vehicle type with regard to environmental performance for which application is made can be provided to the approval authority.

Appendix 3.1

Preconditioning requirements for a hybrid application before start of the SHED test

  • 1. 
    Scope
 

1.1.

The following preconditioning requirements before starting the SHED test shall apply only to L-category vehicles equipped with a hybrid propulsion.

  • 2. 
    Test methods
 

2.1.

Before starting the SHED test procedure, the test vehicles shall be preconditioned as follows:

 

2.1.1.

OVC vehicles.

 

2.1.1.1.

As regards OVC vehicles without an operating mode switch, the procedure shall start with the discharge of the electrical energy/power storage device of the vehicle while driving (on the test track, on a chassis dynamometer, etc.) in any of the following conditions:

 

(a)

at a steady speed of 50 km/h until the fuel-consuming engine of the HEV starts up;

 

(b)

if a vehicle cannot reach a steady speed of 50 km/h without the fuel-consuming engine starting up, the speed shall be reduced until it can run at a lower steady speed at which the fuel-consuming engine does not start up for a defined time or distance (to be determined by the technical service and the manufacturer);

 

(c)

in accordance with the manufacturer’s recommendation.

The fuel-consuming engine shall be stopped within ten seconds of being automatically started.

 

2.1.1.2.

As regards OVC vehicles with an operating mode switch, the procedure shall start with the discharge of the electrical energy/power storage device of the vehicle while driving with the switch in pure electric position (on the test track, on a chassis dynamometer, etc.) at a steady speed of 70 percent ± 5 percent from the maximum thirty minutes speed of the vehicle. By means of derogation if the manufacturer can prove to the technical service to the satisfaction of the approval authority that the vehicle is physically not capable of achieving the thirty minutes speed the maximum fifteen minute speed may be used instead.

Stopping the discharge occurs in any of the following conditions:

 

(a)

when the vehicle is not able to run at 65 percent of the maximum thirty minutes speed;

 

(b)

when the standard on-board instrumentation gives the driver an indication to stop the vehicle;

 

(c)

after 100 km.

If the vehicle is not equipped with a pure electric mode, the electrical energy/power storage device discharge shall be conducted with the vehicle driving (on the test track, on a chassis dynamometer, etc.) under any of the following conditions:

 

(a)

at a steady speed of 50 km/h until the fuel-consuming engine of the HEV starts up;

 

(b)

if a vehicle cannot reach a steady speed of 50 km/h without the fuel-consuming engine starting up, the speed shall be reduced until it can run at a lower steady speed at which the fuel-consuming engine does not start up for a defined time or distance (to be determined by the technical service and the manufacturer);

 

(c)

in accordance with the manufacturer’s recommendation.

The engine shall be stopped within ten seconds of being automatically started. By means of derogation if the manufacturer can prove to the technical service to the satisfaction of the approval authority that the vehicle is physically not capable of achieving the thirty minutes speed the maximum fifteen minute speed may be used instead.

 

2.1.2.

NOVC vehicles.

 

2.1.2.1.

As regards NOVC vehicles without an operating mode switch, the procedure shall start with a preconditioning of at least two consecutive complete, applicable test type I driving cycles without soak.

 

2.1.2.2.

As regards NOVC vehicles with an operating mode switch, the procedure shall start with a preconditioning of at least two consecutive complete, applicable driving cycles without soak, with the vehicle running in hybrid mode. If several hybrid modes are available, the test shall be carried out in the mode which is automatically set after the ignition key is turned (normal mode). On the basis of information provided by the manufacturer, the technical service shall ensure that the limit values are complied with in all hybrid modes.

 

2.1.3.

The preconditioning drive shall be carried out according to the type I test cycle in Appendix 6 to Annex II:

 

2.1.3.1.

for OVC vehicles this shall be carried out under the same conditions as specified by Condition B of the type I test in Appendix 11 to Annex II.

 

2.1.3.2.

for NOVC vehicles this shall be carried out under the same conditions as in the type I test.

Appendix 3.2

Ageing test procedure for evaporative emission control devices

  • 1. 
    Test methods for ageing of evaporative emission control devices

The SHED test shall be conducted with aged evaporative emission control devices fitted. The ageing tests for those devices shall be conducted according to the procedures in this Appendix.

  • 2. 
    Carbon canister ageing

Figure Ap3.2-1

Carbon canister gas flow diagram and ports

Image

A carbon canister representative of the propulsion family of the vehicle as set out in Annex XI shall be selected as test canister and shall be marked in agreement with the approval authority and the technical service.

2.1.   Canister ageing test procedure

In the case of a multiple canister system, each canister shall undergo the procedure separately. The number of test cycles of canister loading and discharging shall correspond to the number set-out in table Ap3.1-1, dwell time and subsequent purging of fuel vapour shall be run to age the test canister at an ambient temperature of 297 ± 2 K as follows:

2.1.1.   Canister loading part of the test cycle

 

2.1.1.1.

Loading of the canister shall start within one minute of completing the purge portion of the test cycle.

 

2.1.1.2.

The (clean air) vent port of the canister shall be open and the purge port shall be capped. A mix by volume of 50 % air and 50 % commercially available petrol or test petrol specified in Appendix 2 to Annex II shall enter through the tank port of the test canister at a flow rate of 40 grams/hour. The petrol vapour shall be generated at a petrol temperature of 313 ± 2 K.

 

2.1.1.3.

The test canister shall be loaded each time to 2,0 ± 0,1 grams breakthrough detected by:

 

2.1.1.3.1.

FID reading (using a mini-SHED or similar) or 5 000 ppm instantaneous reading on the FID occurring at the (clean air) vent port; or

 

2.1.1.3.2.

Gravimetrical test method using the difference in mass of the test canister charged to 2,0 ± 0,1 grams breakthrough and the purged canister.

2.1.2.   Dwell time

A five minute dwell period between canister loading and purging as part of the test cycle shall be applied.

2.1.3   Canister purging part of the test cycle

 

2.1.3.1.

The test canister shall be purged through the purge port and the tank port shall be capped.

 

2.1.3.2.

Four hundred canister bed volumes shall be purged at a rate of 24 l/min into the vent port.

Table Ap3.2-1

Amount of test cycles of charging and purging the test canister

 

Vehicle category

Vehicle category name

Number of test cycles referred to in

L1e-A

Powered cycle

45

L3e-AxT (x=1, 2 or 3)

Two-wheel trial motorcycle

L1e-B

Two-wheel moped

90

L2e

Three-wheel moped

L3e-AxE (x=1, 2 or 3)

Two-wheel Enduro motorcycle

L6e-A

Light on-road quad

L7e-B

Heavy all-terrain quad

L3e & L4e

(vmax< 130 km/h)

Two-wheel motorcycle, with and without side-car

170

L5e

Tricycle

L6e-B

Light quadri-mobile

L7e-C

Heavy quadri-mobile

L3e &L4e

(vmax ≥ 130 km/h)

Two-wheel motorcycle, with and without side-car

300

L7e-A

Heavy on-road quad

  • 3. 
    Ageing test procedure of evaporative emission control valves, cables and linkages
 

3.1.

The durability test shall actuate control valves, cables, and linkages, where applicable, for a minimum of 5 000 cycles.

 

3.2.

Alternatively, the aged evaporative emission control parts tested according to point 3.1. may be replaced with ‘golden’ evaporation emission control valves, cables and linkages complying with the requirements of point 3.5. of Annex VI, to be installed on the type IV test vehicle at the choice of the manufacturer prior to start of the SHED test referred to in Appendix 3.

  • 4. 
    Reporting

The manufacturer shall report the results of the tests referred to in points 2 and 3 in a test report drafted according to the template referred to in Article 32(1) of Regulation (EU) No 168/2013.

Appendix 4

Calibration of equipment for evaporative emission testing

  • 1. 
    Calibration frequency and methods

1.1.   All equipment shall be calibrated before its initial use and then as often as necessary, and in any case in the month before type-approval testing. The calibration methods to be used are described in this Appendix.

  • 2. 
    Calibration of the enclosure

2.1.   Initial determination of enclosure internal volume

 

2.1.1.

Before its initial use, the internal volume of the chamber shall be determined as follows. The internal dimensions of the chamber are carefully measured, allowing for any irregularities such as bracing struts. The internal volume of the chamber is determined from these measurements.

 

2.1.2.

The net internal volume is determined by subtracting 0,14 m3 from the internal volume of the chamber. Alternatively, the actual volume of the test vehicle may be subtracted.

 

2.1.3.

The chamber shall be checked as in point 2.3. If the propane mass does not tally to within ± 2 % with the injected mass, corrective action is required.

2.2.   Determination of chamber background emissions

This operation determines that the chamber contains no materials that emit significant amounts of hydrocarbons. The check shall be carried out when the enclosure is brought into service, after any operations in it which may affect background emissions and at least once per year.

 

2.2.1.

Calibrate the analyser (if required). The hydrocarbon analyser shall be set to zero and spanned immediately before the test.

 

2.2.2.

Purge the enclosure until a stable hydrocarbon reading is obtained. The mixing fan is turned on, if not already on.

 

2.2.3.

Seal the chamber and measure the background hydrocarbon concentration, temperature and barometric pressure. These are the initial readings CHCi. pi and Ti used in the enclosure background calculation.

 

2.2.4.

The enclosure is allowed to stand undisturbed with the mixing fan on for four hours.

 

2.2.5.

The hydrocarbon analyser shall be set to zero and spanned immediately before the end of the test.

 

2.2.6.

At the end of this time, use the same analyser to measure the hydrocarbon concentration in the chamber. The temperature and the barometric pressure are also measured. These are the final readings CHCf. Pf and Tf.

 

2.2.7.

Calculate the change in mass of hydrocarbons in the enclosure over the time of the test in accordance with point 2.4. The background emission of the enclosure shall not exceed 0,4 g.

2.3.   Calibration and hydrocarbon retention test of the chamber

The calibration and hydrocarbon retention test in the chamber provides a check on the calculated volume in point 2.1. and also measures any leak rate.

 

2.3.1.

Purge the enclosure until a stable hydrocarbon concentration is reached. Turn on the mixing fan, if it is not already on. The hydrocarbon analyser shall be calibrated (if necessary) then set to zero and spanned immediately before the test.

 

2.3.2.

Seal the enclosure and measure the background concentration, temperature and barometric pressure. These are the initial readings CHCi., pi and Ti used in the enclosure calibration.

 

2.3.3.

Inject approximately 4 grams of propane into the enclosure. The mass of propane shall be measured to an accuracy of ± 2 % of the measured value.

 

2.3.4.

Allow the contents of the chamber to mix for five minutes. The hydrocarbon analyser shall be set to zero and spanned immediately before the following test. Measure the hydrocarbon concentration, temperature and barometric pressure. These are the final readings CHCf, pf and Tf for the calibration of the enclosure.

 

2.3.5.

Using the readings taken in accordance with points 2.3.2 and 2.3.4 and the formula in point 2.4, calculate the mass of propane in the enclosure. This shall be within ± 2 % of the mass of propane measured in accordance with point 2.3.3.

 

2.3.6.

Allow the contents of the chamber to mix for a minimum of four hours. Then measure and record the final hydrocarbon concentration, temperature and barometric pressure. The hydrocarbon analyser shall be set to zero and spanned immediately before the end of the test.

 

2.3.7.

Using the formula in 2.4, calculate the hydrocarbon mass from the readings taken in points 2.3.6 and 2.3.2. The mass may not differ by more than 4 % from the hydrocarbon mass calculated in accordance with point 2.3.5.

2.4.   Calculations

The calculation of net hydrocarbon mass change within the enclosure shall be used to determine the chamber’s hydrocarbon background and leak rate. Initial and final readings of hydrocarbon concentration, temperature and barometric pressure are used in the following formula to calculate the mass change:

Equation Ap3-5:

Formula

where:

 

MHC

=

mass of hydrocarbon in grams;

CHC

=

hydrocarbon concentration in the enclosure (ppm carbon (NB: Formula));

V

=

net enclosure volume in cubic metres as measured in accordance with point 2.1.1;

T

=

ambient temperature in the enclosure, K;

p

=

barometric pressure in kPa;

k

=

17,6;

where:

 
 

i is the initial reading;

 
 

f is the final reading.

  • 3. 
    Checking of FID hydrocarbon analyser

3.1.   Detector response optimisation

The FID analyser shall be adjusted as specified by the instrument manufacturer. Propane in air shall be used to optimise the response on the most common operating range.

3.2.   Calibration of the HC analyser

The analyser shall be calibrated using propane in air and purified synthetic air. A calibration curve shall be established as described in points 4.1 to 4.5.

3.3.   Oxygen interference check and recommended limits

The response factor (Rf) for a particular hydrocarbon species is the ratio of the FID C1 reading to the gas cylinder concentration, expressed as ppm C1.

The concentration of the test gas shall be such as to give a response of approximately 80 % of full scale deflection, for the operating range. The concentration shall be known to an accuracy of ± 2 % in reference to a gravimetric standard expressed in volume. In addition, the gas cylinder shall be preconditioned for 24 hours at between 293,2 K and 303,2 K (20 °C and 30 °C).

Response factors shall be determined when introducing an analyser into service and thereafter at major service intervals. The reference gas to be used is propane balanced with purified air which shall be taken to give a response factor of 1,00.

The test gas to be used for oxygen interference and the recommended response factor range are given the following response factor range for Propane and Nitrogen: 0,95 ≤ Rf ≤ 1,05.

  • 4. 
    Calibration of the hydrocarbon analyser

Each of the normally used operating ranges are calibrated by the following procedure:

 

4.1.

Establish the calibration curve by at least five calibration points spaced as evenly as possible over the operating range. The nominal concentration of the calibration gas with the highest concentrations shall be at least 80 % of the full scale.

 

4.2.

Calculate the calibration curve by the method of least squares. If the resulting polynomial degree is greater than 3, then the number of calibration points shall be at least the number of the polynomial degree plus 2.

 

4.3.

The calibration curve shall not differ by more than 2 % from the nominal value of each calibration gas.

 

4.4.

Using the coefficients of the polynomial derived from point 4.2, a table of indicated reading against true concentration shall be drawn up in steps of no greater than 1 % of full scale. This is to be carried out for each analyser range calibrated. The table shall also contain all of the following:

 

(a)

date of calibration;

 

(b)

span and zero potentiometer readings (where applicable), nominal scale;

 

(c)

reference data of each calibration gas used;

 

(d)

the actual and indicated value of each calibration gas used together with the percentage differences.

 

4.5.

Alternative technology (e.g. computer, electronically controlled range switch) may be used if it can be shown to the satisfaction of the approval authority that it can ensure equivalent accuracy.

ANNEX VI

Test type V requirements: durability of pollution-control devices

 

Appendix Number

Appendix title

Page

1

The Standard Road Cycle for L-Category Vehicles (SRC-LeCV)

194

2

The USA EPA Approved Mileage Accumulation durability cycle

204

  • 0. 
    Introduction
 

0.1.

This Annex describes the procedures for type V testing to verify the durability of pollution-control devices of L-category vehicles in accordance with Article 23(3) of Regulation (EU) No 168/2013.

 

0.2.

The type V test procedure includes mileage accumulation procedures to age the test vehicles in a defined and repeatable way and also includes the frequency of applied type I emission verification test procedures conducted before, during and after the mileage accumulation of the test vehicles.

  • 1. 
    General requirements
 

1.1.

The test vehicles’ powertrain and pollution-control device type fitted on the test vehicles shall be documented and listed by the manufacturer. The list shall include at a minimum such items as the specifications of the propulsion type and its powertrain, where applicable, the exhaust oxygen sensor(s), catalytic converter(s) type, particulate filter(s) or other pollution-control devices, intake and exhaust systems and any peripheral device(s) that may have an impact on the environmental performance of the approved vehicle. This documentation shall be added to the test report.

 

1.2.

The manufacturer shall provide evidence of the possible impacts on type V test results of any modification to the emission abatement system configuration, the pollution-control device type specifications or other peripheral device(s) interacting with the pollution-control devices, in production of the vehicle type after environmental performance type-approval. The manufacturer shall provide the approval authority with this documentation and evidence upon request in order to prove that the durability performance of the vehicle type with regard to environmental performance will not be negatively affected by any change in vehicle production, retrospective changes in the vehicle configuration, changes in the specifications of any pollution-control device type, or changes in peripheral devices fitted on the approved vehicle type.

 

1.3.

Category L4e motorcycles with side-car shall be exempted from type V durability testing if the manufacturer can provide the evidence and documentation referred to in this Annex for the L3e two-wheel motorcycle on which the assembly of the L4e vehicle was based. In all other cases, the requirements of this Annex shall apply to category L4e motorcycles with side-car.

  • 2. 
    Specific requirements

2.1   Test vehicle requirements

2.1.1.   The test vehicles used for type V durability testing and in particular the pollution-control and peripheral devices that are relevant for the emission abatement system shall be representative of the vehicle type with regard to environmental performance produced in series and placed on the market.

2.1.2.   The test vehicles shall be in good mechanical order at the start of mileage accumulation and it shall not have more than 100 km accumulated after it was first started at the end of the production line. The propulsion and pollution-control devices shall not have been used since its manufacture, with the exception of quality control tests and accumulation of the first 100 km.

2.1.3.   Regardless of the durability test procedure selected by the manufacturer, all pollution-control devices and systems, both including hardware, powertrain software and powertrain calibration, fitted on the test vehicles shall be installed and operating for the entire mileage accumulation period.

2.1.4.   The pollution-control devices on the test vehicles shall be permanently marked under surveillance of the technical service before the start of mileage accumulation and be listed together with the vehicle identification number, powertrain software and powertrain calibration sets. The manufacturer shall make that list available at the request of the approval authority.

2.1.5.   Maintenance, adjustments and the use of the controls of the test vehicles shall be as recommended by the manufacturer in the appropriate repair and maintenance information and in the user manual.

2.1.6.   The durability test shall be conducted with a suitable commercially available fuel at the discretion of the manufacturer. If the test vehicles is/are equipped with a two-stroke engine, lubricating oil shall be used in the proportion and of the grade recommended by the manufacturer in the user manual.

2.1.7.   The test vehicles’ cooling system shall enable the vehicle to operate at temperatures similar to those obtained during normal road use conditions (oil, coolant, exhaust system, etc.).

2.1.8.   If the durability test is completed on a test track or road, the reference mass of the test vehicle shall be at least equal to that used for type I emission tests conducted on a chassis dynamometer.

2.1.9.   If approved by the technical service and to the satisfaction of the approval authority, the type V test procedure may be carried out using a test vehicle of which the body style, gear box (automatic or manual) and wheel or tyre size differ from those of the vehicle type for which the environmental performance type-approval is sought.

2.2.   In the type V test procedure, mileage shall be accumulated by driving the test vehicles either on a test track, on the road or on a chassis dynamometer. The test track or test road shall be selected at the discretion of the manufacturer.

2.2.1.   Chassis dynamometer used for mileage accumulation

 

2.2.1.1.

Chassis dynamometers used to accumulate test type V durability mileage shall enable the durability mileage accumulation cycle in Appendix 1 or 2, as applicable, to be carried out.

 

2.2.1.2.

In particular, the dynamometer shall be equipped with systems simulating the same inertia and resistance to progress as those used in the type I emission laboratory test in Annex II. Emission analysis equipment is not required for mileage accumulation. The same inertia and flywheel settings and calibration procedures shall be used for the chassis dynamometer referred to in Annex II, used to accumulate mileage with the test vehicles.

 

2.2.1.3.

The test vehicles may be moved to a different bench in order to conduct type I emission verification tests. The mileage accumulated in the type I emission verification tests may be added to the total accumulated mileage.

2.3.   The type I emission verification tests before, during and after durability mileage accumulation shall be conducted according to the test procedures for emissions after cold start set out in Annex II. All type I emission verification test results shall be listed and made available to the technical service and to the approval authority upon request. The results of type I emission verification tests at the start and the finish of durability mileage accumulation shall be included in the test report. At least the first and last type I emission verification tests shall be conducted or witnessed by the technical service and reported to the approval authority. The test report shall confirm and state whether the technical service conducted or witnessed the type I emission verification testing.

2.4.   Type V test requirements for an L-category vehicle equipped with a hybrid propulsion

2.4.1.   For OVC vehicles:

The electrical energy/power storage device may be charged twice a day during mileage accumulation.

For OVC vehicles with an operating mode switch, mileage accumulation shall be driven in the mode which is automatically set after the ignition key is turned (normal mode).

During the mileage accumulation, a change to another hybrid mode is allowed if necessary in order to continue the mileage accumulation, after agreement of the technical service and to the satisfaction of the approval authority. This hybrid mode change shall be recorded in the test report.

Pollutant emissions shall be measured under the same conditions as specified by Condition B of the type I test (points 3.1.3. and 3.2.3.).

2.4.2.   For NOVC vehicles:

For NOVC vehicles with an operating mode switch, mileage accumulation shall be driven in the mode which is automatically set after the ignition key is turned on (normal mode).

Pollutant emissions shall be measured in the same conditions as in the type I test.

  • 3. 
    Test type V, durability test procedure specifications

The specifications of the three durability test procedures set out in Article 23(3) of Regulation (EU) No 168/2013 are as follows:

3.1.   Actual durability testing with full mileage accumulation

The durability test procedure with full mileage accumulation to age the test vehicles shall refer to Article 23(3)(a) of Regulation (EU) No 168/2013. Full mileage accumulation shall mean full completion of the assigned test distance laid down in Part A of Annex VII to Regulation (EU) No 168/2013. by repeating the driving manoeuvres laid down in Appendix 1 or, if applicable in Appendix 2.

3.1.1.   The manufacturer shall provide evidence that the emission limits in the applicable type I emission laboratory test cycle, as set out in Part A or B of Annex VI to Regulation (EU) No 168/2013, of the aged test vehicles are not exceeded when starting mileage accumulation, during the accumulation phase and after full mileage accumulation has been finalised.

3.1.2.   Multiple type I emission tests shall be conducted during the full mileage accumulation phase with a frequency and amount of type I test procedures at the choice of the manufacturer and to the satisfaction of the technical service and approval authority. The type I emission test results shall provide sufficient statistical relevance to identify the deterioration trend, which shall be representative of the vehicle type with regard to environmental performance as placed on the market (see Figure 5-1).

Figure 5-1

Test type V – durability test procedure with full mileage accumulation

Image

3.2.   Actual durability testing with partial mileage accumulation

The durability test procedure for L-category vehicles with partial mileage accumulation shall refer to Article 23(3)(b) of Regulation (EU) No 168/2013. Partial mileage accumulation shall involve completion of a minimum of 50 % of the test distance specified in Part A of Annex VII to Regulation (EU) No 168/2013 and compliance with the stop criteria in point 3.2.3.

3.2.1.   The manufacturer shall provide evidence that the emission limits in the applicable type I emission laboratory test cycle, as set out in Part A of Annex VI to Regulation (EU) No 168/2013, of the tested aged vehicles are not exceeded at the start of mileage accumulation, during the accumulation phase and after the partial accumulation.

3.2.2.   Multiple type I emission tests shall be conducted during the partial mileage accumulation phase, with the frequency and number of type I test procedures chosen by the manufacturer. The type I emission test results shall provide sufficient statistical relevance to identify the deterioration trend, which shall be representative of the vehicle type with regard to the environmental performance placed on the market (see Figure 5-2).

Figure 5-2

Test type V – accelerated durability test procedure with partial mileage accumulation

Image

3.2.3.   Stop criteria for the durability test procedure with partial mileage accumulation

Partial mileage accumulation may stop if the following criteria are met:

 

3.2.3.1.

if a minimum of 50 % of the applicable test distance laid down in Part A of Annex VII to Regulation (EU) No 168/2013 has been accumulated; and

 

3.2.3.2.

if all the type I emission verification test results are below the emission limits laid down in Part A of Annex VI to Regulation (EU) No 168/2013 at all times during the partial mileage accumulation phase; or

 

3.2.3.3.

if the manufacturer cannot prove that the stop criteria in points 3.2.3.1. and 3.2.3.2. are met, the mileage accumulation shall continue to the point where those criteria are met or to the fully accumulated mileage set out in Part A of Annex VII to Regulation (EU) No 168/2013.

3.2.4.   Data processing and reporting for the durability test procedure with partial mileage accumulation

 

3.2.4.1.

The manufacturer shall use the arithmetic mean of the type I emission test results at each test interval, with a minimum of two emission tests per test interval. All arithmetic mean type I emissions test results shall be plotted per THC, CO, NOx, and if applicable NMHC and PM, emission constituent, against accumulation distance rounded to the nearest kilometre.

 

3.2.4.2.

The best fit linear line (trend line:

Formula

) shall be fitted and drawn through all these data points based on the method of least squares. This best-fit straight trend line shall be extrapolated over the full durability mileage laid down in Part A of Annex VII to Regulation (EU) No 168/2013. At the request of the manufacturer, the trend line may start as of 20 % of the durability mileage laid down in Part A of Annex VII to Regulation (EU) No 168/2013, in order to take into account possible run-in effects of the pollution-control devices.

 

3.2.4.3.

A minimum of four calculated arithmetic mean data points shall be used to draw each trend line, with the first at, or before, 20 % of the durability mileage laid down in Part A of Annex VII to Regulation (EU) No 168/2013 and the last one at the end of mileage accumulation; at least two other data points shall be equally spaced between the first and final type I test measurement distances.

 

3.2.4.4.

The applicable emission limits set out in Part A of Annex VI to Regulation (EU) No 168/2013 shall be plotted in the graphs per emission constituent laid down in points 3.2.4.2. and 3.2.4.3. The plotted trend line shall not exceed these applicable emission limits at any mileage data point. The graph per THC, CO, NOx, and if applicable NMHC and PM, emission constituent plotted against accumulation distance shall be added to the test report. The list with all the type I emission test results used to establish the best-fit straight trend line shall be made available to the technical service upon request.

Figure A5-3

Theoretical example of the plotted type I total hydrocarbon (THC) emission test results, the plotted type I THC Euro 4 test limit (170 mg/km) and the best-fit straight trend line of a Euro 4 motorcycle (L3e with vmax > 130 km/h ), all versus accumulated mileage

Image

 

3.2.4.5.

Trend line parameters a, x and b of the best-fit straight lines and the calculated pollutant value at the end mileage according to the vehicle category shall be stated in the test report. The graph for all emission constituents shall be plotted in the test report. In the test report it shall also be stated which measurements were taken or witnessed by the technical service and which by the manufacturer.

3.3.   The mathematical durability procedure

L-category vehicles using the mathematical durability procedure shall refer to point 3(c) of Article 23 of Regulation (EU) No 168/2013.

3.3.1.   The emission results of the vehicle that has accumulated more than 100 km after it was first started at the end of the production line, the applied deterioration factors set out in Part B of Annex VII to Regulation (EU) No 168/2013, and the product of the multiplication of both and the emission limit set out in Annex VI to Regulation (EU) No 168/2013 shall be added to the test report.

3.4.   Durability mileage accumulation cycles

One of the following two durability mileage accumulation test cycles shall be conducted to age the test vehicles until the assigned test distance laid down in Part A of Annex VII to Regulation (EU) No 168/2013 is fully completed according to the full mileage accumulation test procedure set out in point 3.1. or partially completed according to the partial mileage accumulation test procedure in point 3.2.:

3.4.1.   The Standard Road Cycle (SRC-LeCV) for L-category vehicles

The Standard Road Cycle (SRC-LeCV) custom tailored for L-category vehicles is the principle durability type V test cycle composed of a set of four mileage accumulation durability cycles. One of these durability mileage accumulation cycles shall be used to accumulate mileage by the test vehicles according to the technical details laid down in Appendix 1.

3.4.2.   The USA EPA Approved Mileage Accumulation cycle

At the choice of the manufacturer, the AMA durability mileage accumulation cycle may be conducted as alternative type V mileage accumulation cycle up to and including the last date of registration set out in point 1.5.2. of Annex IV to Regulation (EU) No 168/2013. The AMA durability mileage accumulation cycle shall be conducted according to the technical details laid down in Appendix 2.

3.5.   Test type V durability verification testing using ‘golden’ pollution-control devices

3.5.1.   The pollution-control devices may be removed from the test vehicles after:

 

3.5.1.2.

full mileage accumulation according to the test procedure in point 3.1. is completed, or

 

3.5.1.3.

partial mileage accumulation according to the test procedure in point 3.2. is completed.

3.5.2.   At the choice of the manufacturer, ‘golden’ pollution-control devices may repeatedly be used for durability performance verification and approval demonstration testing on the same vehicle type with regard to the environmental performance by fitting them on (a) representative parent vehicles representing the propulsion family set out in Annex XI, later on in vehicle development.

3.5.3.   The ‘golden’ pollution-control devices shall be permanently marked and the marking number, the associated type I test results and the specifications shall be made available to the approval authority upon request.

3.5.4.   In addition, the manufacturer shall mark and store new, non-aged pollution-control devices with the same specifications as those of the ‘golden’ pollution-control devices and, in the event of a request under point 3.5.5., make these available also to the approval authority, as a reference base.

3.5.5.   The approval authority and technical service shall be given access at any time during or after the environmental performance type-approval process both to the ‘golden’ pollution-control devices and ‘new, non-aged’ pollution-control devices. The approval authority or technical service may request and witness a verification test by the manufacturer or may have the ‘new, non-aged’ and ‘golden’ pollution-control devices tested by an independent test laboratory in a non-destructive way.

Appendix 1

The Standard Road Cycle for L-Category Vehicles (SRC-LeCV)

  • 1. 
    Introduction
 

1.1.

The Standard Road Cycle for L-Category Vehicles (SRC-LeCV) is a representative kilometre accumulation cycle to age L-category vehicles and in particular their pollution-control devices in a defined, repeatable and representative way. The test vehicles may run the SRC-LeCV on the road, on a test track or on a kilometre accumulation chassis dynamometer.

 

1.2.

The SRC-LeCV shall consist of five laps of a 6 km course. The length of the lap may be changed to accommodate the length of the kilometre accumulation test track or test road. The SRC-LeCV shall include four different vehicle speed profiles.

 

1.3.

The manufacturer may request to be allowed alternatively to perform the next higher numbered test cycle, with the agreement of the approval authority, if it considers that this better represents the real-world use of the vehicle.

  • 2. 
    SRC-LeCV test requirements

2.1.   If the SRC-LeCV is performed on a kilometre accumulation chassis dynamometer:

 

2.1.1.

the chassis dynamometer shall be equipped with systems equivalent to those used in the type I emission laboratory test set out in Annex II to Regulation (EU) No 168/2013, simulating the same inertia and resistance to progress. Emission analysis equipment shall not be required for mileage accumulation. The same inertia and flywheel settings and calibration procedures shall be used for the chassis dynamometer used to accumulate mileage with the test vehicles set out in Annex II to Regulation (EU) No 168/2013;

 

2.1.2.

the test vehicles may be moved to a different chassis dynamometer in order to conduct type I emission verification tests. This dynamometer shall enable the SRC-LeCV to be carried out;

 

2.1.3.

the chassis dynamometer shall be configured to give an indication after each quarter of the 6 km course has been passed that the test driver or robot driver shall proceed with the next set of actions;

 

2.1.4.

a timer displaying seconds shall be made available for execution of the idling periods;

 

2.1.5.

the distance travelled shall be calculated from the number of rotations of the roller and the roller circumference.

2.2.   If the SRC-LeCV is not performed on a kilometre accumulation chassis dynamometer:

2.2.1.   the test track or test road shall be selected at the discretion of the manufacturer to the satisfaction of the approval authority;

2.2.2.   the track or road selected shall be shaped so as not to significantly hinder the proper execution of the test instructions;

2.2.3.   the route used shall form a loop to allow continuous execution;

2.2.4.   track lengths which are multiples, half or quarter of this length shall be permitted. The length of the lap may be changed to accommodate the length of the mileage accumulation track or road;

2.2.5.   four points shall be marked, or landmarks identified, on the track or road which equate to quarter intervals of the lap;

2.2.6.   the distance accumulated shall be calculated from the number of cycles required to complete the test distance. This calculation shall take into account the length of the road or track and chosen lap length. Alternatively, an electronic means of accurately measuring the actual distance travelled may be used. The odometer of the vehicle shall not be used.

2.2.7.   Examples of test track configurations:

Figure Ap1-1

Simplified graphic of possible test track configurations

Image

2.3.   The total distance travelled shall be the applicable durability mileage set out in Part A of Annex VII to Regulation (EU) No 168/2013, plus one complete SRC-LeCV sub-cycle (30 km).

2.4.   No stopping is permitted mid-cycle. Any stops for type I emission tests, maintenance, soak periods, refuelling, etc. shall be performed at the end of one complete SRC-LeCV sub-cycle, i.e. the culmination of step 47 in Table Ap1-4. If the vehicle travels to the testing area under its own power, only moderate acceleration and deceleration shall be used and the vehicle shall not be operated at full throttle.

2.5.   The four cycles shall be selected on the basis of the maximum design vehicle speed of the L-category vehicle and the engine capacity or, in the case of pure electric or hybrid propulsions, the maximum design speed of the vehicle and the net power.

2.6.   For the purpose of accumulating mileage in the SRC-LeCV, the L-vehicle categories shall be grouped as follows:

Table Ap1-1

L-vehicle category groups for the SRC-LeCV

 

Cycle

WMTC Class

Vehicle maximum design speed (km/h)

Vehicle engine capacity (PI)

Net power (kW)

1

1

vmax ≤ 50 km/h

Vd ≤ 50 cm3

≤ 6 kW

2

50 km/h < vmax < 100 km/h

50 cm3 < Vd < 150 cm3

< 14 kW

3

2

100 km/h ≤ vmax < 130 km/h

Vd ≥ 150 cm3

≥ 14 kW

4

3

130 km/h ≤ vmax

where:

Vd= engine displacement volume in cm3

vmax= maximum design vehicle speed in km/h

2.7.   SRC-LeCV general driving instructions

2.7.1.   Idle instructions

 

2.7.1.1.

If not already stopped, the vehicle shall decelerate to a full stop and the gear shifted to neutral. The throttle shall be fully released and ignition shall remain on. If a vehicle is equipped with a stop-start system or, in the case of a hybrid electric vehicle, the combustion engine switches off when the vehicle is stationary; it shall be ensured that the combustion engine continues to idle.

 

2.7.1.2.

The vehicle shall not be prepared for the following action in the test cycle until the full required idle duration has passed.

2.7.2.   Acceleration instructions:

 

2.7.2.1.

accelerate to the target vehicle speed using the following sub-action methodologies:

2.7.2.1.1.   moderate: normal medium part-load acceleration, up to approximately half throttle.

2.7.2.1.2.   hard: high part-load acceleration up to full throttle.

 

2.7.2.2.

if moderate acceleration is no longer able to provide a noticeable increase in actual vehicle speed to reach a target vehicle speed, then hard acceleration shall be used and ultimately full throttle.

2.7.3.   Deceleration instructions:

 

2.7.3.1.

decelerate from either the previous action or from the maximum vehicle speed attained in the previous action, whichever is lower.

 

2.7.3.2.

if the next action sets the target vehicle speed at 0 km/h, the vehicle shall be stopped before proceeding.

 

2.7.3.3.

moderate deceleration: normal let-off of the throttle; brakes, gears and clutch may be used as required.

 

2.7.3.4.

coast-through deceleration: full let-off of the throttle, clutch disengaged and in gear, no foot/hand control actuated, no brakes applied. If the target speed is 0 km/h (idle) and if the actual vehicle speed is ≤ 5 km/h, the clutch may be disengaged, the gear shifted to neutral and the brakes used in order to prevent engine stall and to entirely stop the vehicle. An upshift is not allowed during a coast-through deceleration. The rider may downshift to increase the braking effect of the engine. During gear changes, extra care shall be afforded to ensure that the gear change is performed promptly, with minimum (i.e. < 2 seconds) coasting in neutral gear, clutch and partial clutch use. The vehicle manufacturer may request to extend this time with the agreement of the approval authority if absolutely necessary.

 

2.7.3.5.

coast-down deceleration: deceleration shall be initiated by de-clutching (i.e. separating the drive from the wheels) without the use of brakes until the target vehicle speed is reached.

2.7.4.   Cruise instruction:

 

2.7.4.1.

if the following action is ‘cruise’, the vehicle may be accelerated to attain the target vehicle speed.

 

2.7.4.2.

the throttle shall continue to be operated as required to attain and remain at the target cruising vehicle speed.

2.7.5.   A driving instruction shall be performed in its entirety. Additional idling time, acceleration to above, and deceleration to below, the target vehicle speed is permitted in order to ensure that actions are performed fully.

2.7.6.   Gear changes should be carried out according to the guidance laid down in point 4.5.5. of Appendix 9 of Annex II. Alternatively, guidance provided by the manufacturer to the consumer may be used if approved by the approval authority.

2.7.7.   Where the test vehicle cannot reach the target vehicle speeds set out in the applicable SRC-LeCV, it shall be operated at wide open throttle and using other available options to attain maximum design speed.

2.8.   SRC-LeCV test steps

The SRC-LeCV test shall consist of the following steps:

 

2.8.1.

the maximum design speed of the vehicle and either the engine capacity or net power, as applicable, shall be obtained;

 

2.8.2.

the required SRC-LeCV shall be selected from Table Ap1-1 and the required target vehicle speeds and detailed driving instructions from Table Ap1-3.

 

2.8.3.

the column ‘decelerate by’ shall indicate the delta vehicle speed to be subtracted either from the previously attained target vehicle speed or from the maximum design vehicle speed, whichever is lower.

Example lap 1:

 
 

vehicle No 1: L1e-B low-speed moped with maximum design vehicle speed of 25 km/h, subject to SRC-LeCV No 1

 
 

vehicle No 2: L1e-B high-speed moped with maximum design vehicle speed of 45 km/h, subject to SRC-LeCV No 1

Table Ap1-2

Example L1e-B low-speed moped and L1e-B high-speed moped, actual vs. target vehicle speeds

 

Lap

Sub-lap

Action

Time

(s)

To/at

(Target vehicle speed in km/h)

By

(Delta vehicle speed in km/h)

Vehicle No 1

(Actual vehicle speed in km/h)

Vehicle No 2

(Actual vehicle speed in km/h)

1

1st 1/4

           
   

Stop & Idle

10

       
   

Accelerate

 

35

 

25

35

   

Cruise

 

35

 

25

35

 

2nd 1/4

           
   

Decelerate

   

15

10

20

   

Accelerate

 

35

 

25

35

   

Cruise

 

35

 

25

35

 

3rd 1/4

           
   

Decelerate

   

15

10

20

   

Accelerate

 

45

 

25

45

   

Cruise

 

45

 

25

45

 

4th 1/4

           
   

Decelerate

   

20

5

25

   

Accelerate

 

45

 

25

45

   

Cruise

 

45

 

25

45

 

2.8.4.

A table of target vehicle speeds shall be prepared indicating the nominal target vehicle speeds set out in Tables Ap1-3 and Ap-4 and the attainable target vehicle speeds of the vehicle in a format preferred by the manufacturer to the satisfaction of the approval authority.

 

2.8.5.

In accordance with point 2.2.5., quarter divisions of the lap length shall be marked or identified on the test track or road, or a system shall be used to indicate the distance being passed on the chassis dynamometer.

 

2.8.6.

After each sub-lap is passed, the required list of actions of Tables Ap1-3 and Ap-4 shall be performed in order and in accordance with point 2.7 regarding the general driving instructions to or at the next target vehicle speed.

 

2.8.7.

The maximum attained vehicle speed may deviate from the maximum design vehicle speed depending on the type of acceleration required and track conditions. Therefore, during the test the actual attained vehicle speeds shall be monitored to see if the target vehicle speeds are being met as required. Special attention shall be paid to peak vehicle speeds and cruise vehicle speeds close to the maximum design vehicle speed and the subsequent vehicle speed differences in the decelerations.

 

2.8.8.

Where a significant deviation is consistently found when performing multiple sub-cycles, the target vehicle speeds shall be adjusted in the table in point 2.8.4. The adjustment needs to be made only when starting a sub-cycle and not in real time.

2.9.   SRC-LeCV detailed test cycle description

2.9.1.   Graphical overview of the SRC-LeCV

Figure Ap1-2

SRC-LeCV, example distance accumulation characteristics for all four cycles

Image

2.9.2.   SRC-LeCV detailed cycle instructions

Table Ap1-3

Actions and sub-actions for each cycle and sub-cycle, lap 1, 2 and 3

 

Cycle:

1

2

3

4

Lap

Sub-lap

Action

Sub-action

Time (s)

To/at

By

To/at

By

To/at

By

To/at

By

1

1st

1/4

     

(km/h)

   

Stop & Idle

 

10

               
   

Accelerate

Hard

 

35

 

50

 

55

 

90

 
   

Cruise

   

35

 

50

 

55

 

90

 
 

2nd

1/4

                     
   

Decelerate

Moderate

   

15

 

15

 

15

 

15

   

Accelerate

Moderate

 

35

 

50

 

55

 

90

 
   

Cruise

   

35

 

50

 

55

 

90

 
 

3rd

1/4

                     
   

Decelerate

Moderate

   

15

 

15

 

15

 

15

   

Accelerate

Moderate

 

45

 

60

 

75

 

100

 
   

Cruise

   

45

 

60

 

75

 

100

 
 

4th

1/4

                     
   

Decelerate

Moderate

   

20

 

10

 

15

 

20

   

Accelerate

Moderate

 

45

 

60

 

75

 

100

 
   

Cruise

   

45

 

60

 

75

 

100

 

2

1st

1/2

                     
   

Decelerate

Coast-through

 

0

 

0

 

0

 

0

 
   

Stop & Idle

 

10

               
   

Accelerate

Hard

 

50

 

100

 

100

 

130

 
   

Decelerate

Coast-down

   

10

 

20

 

10

 

15

   

Optional acceleration

Hard

 

40

 

80

 

90

 

115

 
   

Cruise

   

40

 

80

 

90

 

115

 
 

2nd

1/2

                     
   

Decelerate

Moderate

   

15

 

20

 

25

 

35

   

Accelerate

Moderate

 

50

 

75

 

80

 

105

 
   

Cruise

   

50

 

75

 

80

 

105

 

3

1st

1/2

                     
   

Decelerate

Moderate

   

25

 

15

 

15

 

25

   

Accelerate

Moderate

 

50

 

90

 

95

 

120

 
   

Cruise

   

50

 

90

 

95

 

120

 
 

2nd

1/2

                     
   

Decelerate

Moderate

   

25

 

10

 

30

 

40

   

Accelerate

Moderate

 

45

 

70

 

90

 

115

 
   

Cruise

   

45

 

70

 

90

 

115

 

Table Ap1-4

Actions and sub-actions for each cycle and sub-cycle, lap 4 and 5

 

Cycle:

1

2

3

4

Lap

Sub-lap

Action

Sub-action

Time (s)

To/at

By

To/at

By

To/at

By

To/at

By

4

1st

1/2

     

(km/h)

   

Decelerate

Moderate

   

20

 

20

 

25

 

35

   

Accelerate

Moderate

 

45

 

70

 

90

 

115

 
   

Decelerate

Coast-down

   

20

 

15

 

15

 

15

   

Optional acceleration

Moderate

 

35

 

55

 

75

 

100

 
   

Cruise

   

35

 

55

 

75

 

100

 
 

2nd

1/2

                     
   

Decelerate

Moderate

   

10

 

10

 

10

 

20

   

Accelerate

Moderate

 

45

 

65

 

80

 

105

 
   

Cruise

   

45

 

65

 

80

 

105

 

5

1st

1/4

     

(km/h)

             
   

Decelerate

Coast-through

 

0

 

0

 

0

 

0

 
   

Stop & Idle

 

45

               
   

Accelerate

Hard

 

30

 

55

 

70

 

90

 
   

Cruise

   

30

 

55

 

70

 

90

 
 

2nd

1/4

                     
   

Decelerate

Moderate

   

15

 

15

 

20

 

25

   

Accelerate

Moderate

 

30

 

55

 

70

 

90

 
   

Cruise

   

30

 

55

 

70

 

90

 
 

3rd

1/4

                     
   

Decelerate

Moderate

   

20

 

25

 

20

 

25

   

Accelerate

Moderate

 

20

 

45

 

65

 

80

 
   

Cruise

   

20

 

45

 

65

 

80

 
 

4th

1/4

                     
   

Decelerate

Moderate

   

10

 

15

 

15

 

15

   

Accelerate

Moderate

 

20

 

45

 

65

 

80

 
   

Cruise

   

20

 

45

 

65

 

80

 
   

Decelerate

Coast-through

 

0

 

0

 

0

 

0

 

2.9.3.   Soak procedures in the SRC-LeCV

The SRC-LeCV soak procedure shall consist of the following steps:

 

2.9.3.1.

a full SRC-LeCV sub-cycle (approximately 30 km) shall be completed;

 

2.9.3.2.

a test type I emission test may be performed if deemed necessary for statistical relevance;

 

2.9.3.3.

any required maintenance shall be undertaken and the test vehicle may be refuelled;

 

2.9.3.4.

the test vehicle shall be set to idle with the combustion engine running for a minimum of one hour with no user input;

 

2.9.3.5.

the propulsion of the test vehicle shall be turned off;

 

2.9.3.6.

the test vehicle shall be cooled down and soaked under ambient conditions for a minimum of six hours (or four hours with a fan and lubrication oil at ambient temperature);

 

2.9.3.7.

the vehicle may be refuelled and mileage accumulation shall be resumed as required at lap 1, sub-lap 1 of the SRC-LeCV sub-cycle in Table Ap1-3.

 

2.9.3.8.

the SRC-LeCV soak procedure shall not replace the regular soak time for type I emission tests laid down in Annex II. The SRC-LeCV soak procedure may be coordinated so as to be performed after each maintenance interval or after each emission laboratory test.

 

2.9.3.9

Test type V soak procedure for actual durability testing with full mileage accumulation

 

2.9.3.9.1.

During the full mileage accumulation phase set out in point 3.1 of Annex VI, the test vehicles shall undergo a minimum number of soak procedures set out in Table Ap1-3. These procedures shall be evenly distributed over the accumulated mileage.

 

2.9.3.9.2.

The number of soak procedures to be conducted during the full mileage accumulation phase shall be determined according to the following table:

Table Ap1-3

Number of soak procedures depending on the SRC-LeCV in Table Ap1-1

 

SRC-LeCV, cycle No

Minimum number of test type V soak procedures

1 & 2

3

3

4

4

6

 

2.9.3.10.

Test type V soak procedure for actual durability testing with partial mileage accumulation

During the partial mileage accumulation phase set out in point 3.2 of Annex VI, the test vehicles shall undergo four soak procedures as set out in point 3.1. These procedures shall be evenly distributed over the accumulated mileage.

Appendix 2

The USA EPA Approved Mileage Accumulation durability cycle (AMA)

  • 1. 
    Introduction
 

1.1.

The Approved Mileage Accumulation durability cycle (AMA) by the environmental protection agency (EPA) of the United States of America (USA) is a mileage accumulation cycle used to age test vehicles and their pollution-control devices in a way that is repeatable but significantly less representative for the EU fleet and traffic situation than the SRC-LeCV. The AMA test cycle is to be phased out but it may be used in a transitional period up to and including the date of last registration set out in point 1.5.2. of Annex IV to Regulation (EU) No 168/2013, pending the confirmation in the environmental effect study referred to in Article 23(4) of Regulation (EU) No 168/2013. The L-category test vehicles may run the test cycle on the road, on a test track or on a kilometre accumulation chassis dynamometer.

 

1.2.

The AMA test cycle shall be completed by repeating the AMA sub-cycle in point 2 until the applicable durability mileage in Part A of Annex VII to Regulation (EU) No 168/2013 has been accumulated.

 

1.3.

The AMA test cycle shall be composed of 11 sub-sub-cycles covering six kilometres each.

  • 2. 
    AMA test cycle requirements
 

2.1.

For the purpose of accumulating mileage in the AMA test cycle, the L-category vehicles shall be grouped as follows:

Table Ap2-1

Grouping of L-category vehicles for the purpose of the AMA mileage accumulation test

 

L-category vehicle class

Engine capacity (cm3)

vmax (km/h)

I

< 150

Not applicable

II

≥ 150

≤ 130

III

≥ 150

>130

 

2.2.

If the AMA test cycle is performed on a kilometre accumulation chassis dynamometer, the distance travelled shall be calculated from the number of rotations of the roller and the roller circumference.

 

2.3.

One AMA test sub-cycle shall be performed as follows:

 

2.5.1.

Figure Ap2-1

Driving schedule AMA test sub-sub-cycle

Image

 

2.5.2.

The AMA test cycle consisting of 11 sub-sub-cycles shall be driven at the following sub-sub-cycle vehicle speeds:

Table Ap2-2

Maximum vehicle speed in one AMA sub-cycle

 

Sub-sub-cycle No

Class I vehicle

(km/h)

Class II vehicle

(km/h)

Class III vehicle

Option I (km/h)

Class III vehicle

Option II (km/h)

1

65

65

65

65

2

45

45

65

45

3

65

65

55

65

4

65

65

45

65

5

55

55

55

55

6

45

45

55

45

7

55

55

70

55

8

70

70

55

70

9

55

55

46

55

10

70

90

90

90

11

70

90

110

110

 

2.5.3.

Manufacturers may select one of two cycle vehicle speed options for class III L-category vehicles, completing the entire procedure on their selected option.

 

2.5.4.

During the first nine AMA sub-sub-cycles, the test vehicle is stopped four times with the engine idling each time for 15 seconds.

 

2.5.5.

The AMA sub-cycle shall consist of five decelerations in each sub-sub-cycle, dropping from cycle speed to 30 km/h. The test vehicle shall then gradually be accelerated again until the cycle speed shown in Table Ap2-2 is attained.

 

2.5.6.

The 10th sub-sub-cycle shall be carried out at a steady speed according to the L-category vehicle class as referred in Table Ap2-1.

 

2.5.7.

The 11th sub-sub-cycle shall begin with a maximum acceleration from stop point up to lap speed. At halfway, the brakes are applied normally until the test vehicle comes to a stop. This shall be followed by an idle period of 15 seconds and a second maximum acceleration. This completes one AMA sub-cycle.

 

2.5.8.

The schedule shall then be restarted from the beginning of the AMA sub-cycle.

 

2.5.9.

At the manufacturer’s request, and with the agreement of the approval authority, an L-category vehicle type may be placed in a higher class provided it is capable of complying with all aspects of the procedure for the higher class.

 

2.5.10.

At the manufacturer’s request, and with the agreement of the approval authority, should the L-category vehicle be unable to attain the specified cycle speeds for that class, the L-category vehicle type shall be placed in a lower class. If the vehicle is unable to achieve the cycle speeds required for this lower class, it shall attain the highest possible speed during the test and full throttle shall be applied if necessary to attain that vehicle speed.

ANNEX VII

Test type VII requirements: CO2 emissions, fuel consumption, electric energy consumption and electric range

 

Appendix Number

Appendix title

Page

1.

Method of measuring carbon dioxide emissions and fuel consumption of vehicles powered by a combustion engine only

211

2.

Method of measuring the electric energy consumption of a vehicle powered by an electric powertrain only

215

3.

Method of measuring the carbon dioxide emissions, fuel consumption, electric energy consumption and driving range of vehicles powered by a hybrid electric powertrain

218

3.1.

Electrical energy/power storage device State Of Charge (SOC) profile for an Externally chargeable Hybrid Electric Vehicle (OVC HEV) in a type VII test

234

3.2.

Method for measuring the electricity balance of the battery of OVC and NOVC HEV

235

3.3.

Method of measuring the electric range of vehicles powered by an electric powertrain only or by a hybrid electric powertrain and the OVC range of vehicles powered by a hybrid electric powertrain

236

  • 1. 
    Introduction
 

1.1.

This Annex sets out requirements with regard to energy efficiency of L-category vehicles, in particular with respect to the measurements of CO2 emissions, fuel or energy consumption as well as the electric range of a vehicle.

 

1.2.

The requirements laid down in this Annex apply to the following tests of L-category vehicles equipped with associated powertrain configurations:

 

(a)

the measurement of the emission of carbon dioxide (CO2) and fuel consumption, the measurement of electric energy consumption and the electric range of L-category vehicles powered by a combustion engine only or by a hybrid electric powertrain;

 

(b)

the measurement of electric energy consumption and electric range of L-category vehicles powered by an electric powertrain only.

  • 2. 
    Specification and tests

2.1.   General

The components liable to affect CO2 emissions and fuel consumption or the electric energy consumption shall be so designed, constructed and assembled as to enable the vehicle, in normal use, despite the vibrations to which it may be subjected, to comply with the provisions of this Annex. The test vehicles shall be properly maintained and used.

2.2.   Description of tests for vehicles powered by a combustion engine only

 

2.2.1.

The emissions of CO2 and fuel consumption shall be measured according to the test procedure described in Appendix 1. Vehicles which do not attain the acceleration and maximum speed values required in the test cycle shall be operated with the accelerator control fully depressed until they reach the required operating curve again. Deviations from the test cycle shall be recorded in the test report. The test vehicle shall be properly maintained and used.

 

2.2.2.

For CO2 emissions, the test results shall be expressed in grams per kilometre (g/km) rounded to the nearest whole number.

 

2.2.3.

Fuel consumption values shall be expressed in litres per 100 km in the case of petrol, LPG, ethanol (E85) and diesel or in kg and m3 per 100 km in the case of hydrogen, NG/biomethane and H2NG. The values shall be calculated according to point 1.4.3. of Annex II by the carbon balance method, using the measured emissions of CO2 and the other carbon-related emissions (CO and HC). The results shall be rounded to one decimal.

 

2.2.4.

The appropriate reference fuels as set out in Appendix 2 to Annex II shall be used for testing.

For LPG, NG/biomethane, H2NG, the reference fuel used shall be that chosen by the manufacturer for the measurement of the propulsion unit performance in accordance with Annex X. The fuel chosen shall be specified in the test report according to the template set out in Article 32(1) of Regulation (EU) No 168/2013.

For the purpose of the calculation referred in point 2.2.3., the fuel consumption shall be expressed in appropriate units and the following fuel characteristics shall be used:

 

(a)

density: measured on the test fuel according to ISO 3675:1998 or an equivalent method. For petrol and diesel fuel, the density measured at 288,2 K (15 °C) and 101,3 kPa shall be used; for LPG, natural gas, H2NG and hydrogen, a reference density shall be used, as follows:

 
 

0,538 kg/litre for LPG;

 
 

0,654 kg/m3 for NG (1) / biogas;

Equation 7-1:

Formula

for H2NG (with A being the quantity of NG/biomethane in the H2NG mixture, expressed in percent by volume for H2NG);

 
 

0,084 kg/m3 for hydrogen

 

(b)

hydrogen-carbon ratio: fixed values will be used, as follows:

 
 

C1:1,89O0,016 for E5 petrol;

 
 

C1:1,86O0,005 for diesel;

 
 

C1:2525 for LPG (liquefied petroleum gas);

 
 

C1:4 for NG (natural gas) and biomethane;

 
 

C1:2,74O0,385 for ethanol (E85).

2.3.   Description of tests for vehicles powered by an electric powertrain only

 

2.3.1.

The technical service in charge of the tests shall conduct the measurement of the electric energy consumption according to the method and test cycle described in Appendix 6 to Annex II.

 

2.3.2.

The technical service in charge of the tests shall measure the electric range of the vehicle according to the method described in Appendix 3.3.

 

2.3.2.1.

The electric range measured by this method shall be the only one referred to in promotional material.

 

2.3.2.2.

Category L1e vehicles designed to pedal referred to in Article 2(94) shall be exempted from the electric range test.

 

2.3.3.

Electric energy consumption shall be expressed in Watt hours per kilometre (Wh/km) and the range in kilometres, both rounded to the nearest whole number.

2.4.   Description of tests for vehicles powered by a hybrid electric powertrain

 

2.4.1.

The technical service in charge of the tests shall measure the CO2 emissions and the electric energy consumption according to the test procedure described in Appendix 3.

 

2.4.2.

The test results for CO2 emissions shall be expressed in grams per kilometre (g/km) rounded to the nearest whole number.

 

2.4.3.

The fuel consumption, expressed in litres per 100 km (in the case of petrol, LPG, ethanol (E85) and diesel) or in kg and m3 per 100 km (in the case of NG/biomethane, H2NG and hydrogen), shall be calculated according to point 1.4.3. of Annex II by the carbon balance method using the CO2 emissions measured and the other carbon-related emissions (CO and HC). The results shall be rounded to the first decimal place.

 

2.4.4.

For the purpose of the calculation referred to in point 2.4.3., the prescriptions and reference values of point 2.2.4. shall apply.

 

2.4.5.

If applicable, electric energy consumption shall be expressed in Watt hours per kilometre (Wh/km), rounded to the nearest whole number.

 

2.4.6.

The technical service in charge of the tests shall measure the electric range of the vehicle according to the method described in Appendix 3.3. The result shall be expressed in kilometre, rounded to the nearest whole number.

The electric range measured by this method shall be the only one referred to in promotional material and used for the calculations in Appendix 3.

2.5.   Interpretation of test results

 

2.5.1.

The CO2 value or the value of electric energy consumption adopted as the type-approval value shall be that declared by the manufacturer if this is not exceeded by more than 4 percent by the value measured by the technical service. The measured value may be lower without any limitations.

In the case of vehicles powered by a combustion engine only which are equipped with periodically regenerating systems as defined in Article 2(16), the results are multiplied by the factor Ki obtained from Appendix 13 to Annex II before being compared with the declared value.

 

2.5.2.

If the measured value of CO2 emissions or electric energy consumption exceeds the manufacturer’s declared CO2 emissions or electric energy consumption value by more than 4 percent, another test shall be run on the same vehicle.

Where the average of the two test results does not exceed the manufacturer’s declared value by more than 4 percent, the value declared by the manufacturer shall be taken as the type-approval value.

 

2.5.3.

If, in the event of another test being run, the average still exceeds the declared value by more than 4 percent, a final test shall be run on the same vehicle. The average of the three test results shall be taken as the type-approval value.

  • 3. 
    Modification and extension of approval of the approved type
 

3.1.

For all approved types, the approval authority that approved the type shall be notified of any modification of it. The approval authority may then either:

 

3.1.1.

consider that the modifications made are unlikely to have an appreciable adverse effect on the CO2 emissions and fuel or electric energy consumption values and that the original environmental performance approval will be valid for the modified vehicle type with regard to the environmental performance, or

 

3.1.2.

require a further test report from the technical service responsible for conducting the tests in accordance with point 4.

 

3.2.

Confirmation or extension of approval, specifying the alterations, shall be communicated by the procedure referred to in Article 35 of Regulation (EU) No 168/2013.

 

3.3.

The approval authority that grants the extension of the approval shall assign a serial number for such an extension according to the procedure set out in Article 35 of Regulation (EU) No 168/2013.

  • 4. 
    Conditions of extension of vehicle environmental performance type-approval

4.1.   Vehicles powered by an internal combustion engine only, except those equipped with a periodically regenerating emission-control system

A type-approval may be extended to vehicles produced by the same manufacturer that are of the same type or of a type that differs with regard to the following characteristics in Appendix 1, provided the CO2 emissions measured by the technical service do not exceed the type-approved value by more than 4 percent:

 

4.1.1.

reference mass;

 

4.1.2.

maximum authorised mass.;

 

4.1.3.

type of bodywork;

 

4.1.4.

overall gear ratios;

 

4.1.5.

engine equipment and accessories;

 

4.1.6.

engine revolutions per kilometre in highest gear with an accuracy of +/– 5 %.

4.2.   Vehicles powered by an internal combustion engine only and equipped with a periodically regenerating emission-control system.

The type-approval may be extended to vehicles produced by the same manufacturer that are of the same type or of a type that differs with regard to the characteristics in Appendix 1, as referred to in points 4.1.1. to 4.1.6., without exceeding the propulsion family characteristics of Annex XI, provided the CO2 emissions measured by the technical service do not exceed the type-approved value by more than 4 percent, where the same Ki factor is applicable.

The type-approval may also be extended to vehicles of the same type, but with a different Ki factor, provided the corrected CO2 value measured by the technical service does not exceed the type-approved value by more than 4 percent.

4.3.   Vehicles powered by an electric powertrain only

Extensions may be granted after agreement with the approval authority.

4.4.   Vehicles powered by a hybrid electric powertrain

The type-approval may be extended to vehicles of the same type or of a type that differs with regard to the following characteristics in Appendix 3 provided the CO2 emissions and the electric energy consumption measured by the technical service do not exceed the type-approved value by more than 4 percent:

 

4.4.1.

reference mass;

 

4.4.2.

maximum authorised mass;

 

4.4.3.

type of bodywork;

 

4.4.4.

type and number of propulsion batteries. Where multiple batteries are fitted, e.g. to extend the range extrapolation of the measurement, the base configuration, taking into account the capacities and the way in which the batteries are connected (in parallel, not in series), shall be deemed sufficient.

4.5.   Where any other characteristic is changed, extensions may be granted after agreement with the approval authority.

  • 5. 
    Special provisions

Vehicles produced in the future with new energy-efficient technologies may be subject to complementary test programmes, to be specified at a later stage. Such testing will enable manufacturers to demonstrate the advantages of the technologies.

 

  • (1) 
    Mean value of G20 and G25 reference fuels at 288,2 K (15 °C).

Appendix 1

Method of measuring carbon dioxide emissions and fuel consumption of vehicles powered by a combustion engine only

  • 1. 
    Specification of the test

1.1.   The carbon dioxide (CO2) emissions and fuel consumption of vehicles powered by a combustion engine only shall be determined according to the procedure for the type I test in Annex II in force at the time of the approval of the vehicle.

1.2.   In addition to the CO2 emission and fuel consumption results for the entire type I test, CO2 emissions and fuel consumption shall also be determined separately for parts 1, 2 and 3, if applicable, by using the applicable type I test procedure in force at the time of the approval of the vehicle in accordance with point 1.1.1. of Annex IV to Regulation (EU) No 168/2013.

1.3.   In addition to the conditions in Annex II in force at the time of the approval of the vehicle, the following conditions shall apply:

 

1.3.1.

Only the equipment necessary for the operation of the vehicle during the test shall be in use. If there is a manually controlled device for the engine intake air temperature, it shall be in the position prescribed by the manufacturer for the ambient temperature at which the test is performed. In general, the auxiliary devices required for the normal operation of the vehicle shall be in use.

 

1.3.2.

If the radiator fan is temperature-controlled, it shall be in normal operating condition. The passenger compartment heating system, if present, shall be switched off, as shall any air-conditioning system, but the compressor for such systems shall be functioning normally.

 

1.3.3.

If a super-charger is fitted, it shall be in normal operating condition for the test conditions.

 

1.3.4.

All lubricants shall be those recommended by the manufacturer of the vehicle and shall be specified in the test report.

 

1.3.5.

The widest tyre shall be chosen, except where there are more than three tyre sizes, in which case the second widest shall be chosen. The pressures shall be indicated in the test report.

1.4.   Calculation of CO2 and fuel consumption values

 

1.4.1.

The mass emission of CO2, expressed in g/km, shall be calculated from the measurements taken in accordance with the provisions of point 6 of Annex II.

 

1.4.1.1.

For this calculation, the density of CO2 shall be assumed to be QCO2  = 1,964 g/litre.

 

1.4.2.

The fuel consumption values shall be calculated from the hydrocarbon, carbon monoxide and carbon dioxide emission measurements taken in accordance with the provisions of point 6 of Annex II in force at the time of the approval of the vehicle.

 

1.4.3.

Fuel consumption (FC), expressed in litres per 100 km (in the case of petrol, LPG, ethanol (E85) and diesel) or in kg per 100 km (in the case of an alternative fuel vehicle propelled with NG/biomethane, H2NG or hydrogen) is calculated using the following formulae:

 

1.4.3.1.

for vehicles with a positive ignition engine fuelled with petrol (E5):

Equation Ap1-1:

Formula;

 

1.4.3.2.

for vehicles with a positive ignition engine fuelled with LPG:

Equation Ap1-2:

Formula.

If the composition of the fuel used for the test differs from that assumed for the calculation of normalised consumption, a correction factor (cf) may be applied at the manufacturer’s request, as follows:

Equation Ap1-3:

Formula.

The correction factor is determined as follows:

Equation Ap1-4:

Formula;

where:

nactual= the actual H/C ratio of the fuel used;

 

1.4.3.3.

for vehicles with a positive ignition engine fuelled with NG/biomethane:

Equation Ap1-5:

Formula in m3;

 

1.4.3.4.

for vehicles with a positive ignition engine fuelled by H2NG:

Equation Ap1-6:

Formula in m3;

 

1.4.3.5.

for vehicles fuelled with gaseous hydrogen:

Equation Ap1-7: Formula

For vehicles fuelled with gaseous or liquid hydrogen, the manufacturer may alternatively, with the prior agreement of the approval authority, choose either the formula:

Equation Ap1-8: Formula

or a method in accordance with standard protocols such as SAE J2572.

 

1.4.3.6.

for vehicles with a compression ignition engine fuelled with diesel (B5):

Equation Ap1-9:

Formula;

 

1.4.3.7.

for vehicles with a positive ignition engine fuelled with ethanol (E85):

Equation Ap1-10:

Formula.

 

1.4.4.

In these formulae:

 

FC

=

the fuel consumption in litres per 100 km in the case of petrol, ethanol, LPG, diesel or biodiesel, in m3 per 100 km in the case of natural gas and H2NG or in kg per 100 km in the case of hydrogen.

HC

=

the measured emission of hydrocarbons in mg/km

CO

=

the measured emission of carbon monoxide in mg/km

CO2

=

the measured emission of carbon dioxide in g/km

H2O

=

the measured emission of water (H2O) in g/km

H2

=

the measured emission of hydrogen (H2) in g/km

A

=

the quantity of NG/biomethane in the H2NG mixture, expressed in percent by volume

D

=

the density of the test fuel.

In the case of gaseous fuels, D is the density at 15 °C and at 101,3 kPa ambient pressure:

 

d

=

theoretical distance covered by a vehicle tested under the type I test in km

p1

=

pressure in gaseous fuel tank before the operating cycle in Pa

p2

=

pressure in gaseous fuel tank after the operating cycle in Pa

T1

=

temperature in gaseous fuel tank before the operating cycle in K

T2

=

temperature in gaseous fuel tank after the operating cycle in K

Z1

=

compressibility factor of the gaseous fuel at p1 and T1

Z2

=

compressibility factor of the gaseous fuel at p2 and T2

V

=

inner volume of the gaseous fuel tank in m3

The compressibility factor shall be obtained from the following table:

Table Ap1-1

Compressibility factor Zx of the gaseous fuel

 

T(k) \ p(bar)

5

100

200

300

400

500

600

700

800

900

33

0,8589

10,508

18,854

26,477

33,652

40,509

47,119

53,519

59,730

65,759

53

0,9651

0,9221

14,158

18,906

23,384

27,646

31,739

35,697

39,541

43,287

73

0,9888

0,9911

12,779

16,038

19,225

22,292

25,247

28,104

30,877

33,577

93

0,9970

10,422

12,334

14,696

17,107

19,472

21,771

24,003

26,172

28,286

113

10,004

10,659

12,131

13,951

15,860

17,764

19,633

21,458

23,239

24,978

133

10,019

10,757

11,990

13,471

15,039

16,623

18,190

19,730

21,238

22,714

153

10,026

10,788

11,868

13,123

14,453

15,804

17,150

18,479

19,785

21,067

173

10,029

10,785

11,757

12,851

14,006

15,183

16,361

17,528

18,679

19,811

193

10,030

10,765

11,653

12,628

13,651

14,693

15,739

16,779

17,807

18,820

213

10,028

10,705

11,468

12,276

13,111

13,962

14,817

15,669

16,515

17,352

233

10,035

10,712

11,475

12,282

13,118

13,968

14,823

15,675

16,521

17,358

248

10,034

10,687

11,413

12,173

12,956

13,752

14,552

15,350

16,143

16,929

263

10,033

10,663

11,355

12,073

12,811

13,559

14,311

15,062

15,808

16,548

278

10,032

10,640

11,300

11,982

12,679

13,385

14,094

14,803

15,508

16,207

293

10,031

10,617

11,249

11,897

12,558

13,227

13,899

14,570

15,237

15,900

308

10,030

10,595

11,201

11,819

12,448

13,083

13,721

14,358

14,992

15,623

323

10,029

10,574

11,156

11,747

12,347

12,952

13,559

14,165

14,769

15,370

338

10,028

10,554

11,113

11,680

12,253

12,830

13,410

13,988

14,565

15,138

353

10,027

10,535

11,073

11,617

12,166

12,718

13,272

13,826

14,377

14,926

Appendix 2

Method of measuring the electric energy consumption of a vehicle powered by an electric powertrain only

  • 1. 
    Test sequence
 

1.1.

Electric energy consumption of pure electric vehicles shall be determined according to the procedure for the type I test in Annex II in force at the time of the approval of the vehicle. For this purpose, a pure vehicle shall be classified according to its maximum attainable design vehicle speed.

If the vehicle has several driving modes which may be selected by the driver, the operator shall select that which best matches the target curve.

  • 2. 
    Test method

2.1.   Principle

The following test method shall be used for measuring of the electric energy consumption, expressed in Wh/km:

Table Ap2-1

Parameters, units and accuracy of measurement

 

Parameter

Units

Accuracy

Resolution

Time

s

0,1 s

0,1 s

Distance

m

± 0,1 percent

1 m

Temperature

K

± 1 K

1 K

Speed

km/h

± 1 percent

0,2 km/h

Mass

kg

± 0,5 percent

1 kg

Energy

Wh

± 0,2 percent

Class 0,2 s

according to

IEC (1) 687

2.3.   Test vehicle

2.3.1.   Condition of the vehicle

2.3.1.1.   The vehicle tyres shall be inflated to the pressure specified by the vehicle manufacturer when the tyres are at ambient temperature.

2.3.1.2.   The viscosity of the oils for the mechanical moving parts shall conform to the vehicle manufacturer’s specification.

2.3.1.3.   The lighting, signalling and auxiliary devices shall be off, except those required for the testing and usual day-time operation of the vehicle.

2.3.1.4.   All energy storage systems for other than traction purposes (electric, hydraulic, pneumatic, etc.) shall be charged to their maximum level as specified by the manufacturer.

2.3.1.5.   If the batteries are operated above the ambient temperature, the operator shall follow the procedure recommended by the vehicle manufacturer in order to keep the battery temperature in the normal operating range.

The manufacturer shall be in a position to attest that the thermal management system of the battery is neither disabled nor reduced.

2.3.1.6.   The vehicle shall have travelled at least 300 km in the seven days before the test with the batteries installed for the test.

2.3.2.   Classification of the pure electric test vehicle in the type I test cycle.

In order to measure its electric consumption in the type I test cycle, the test vehicle shall be classified according to the achievable maximum design vehicle speed thresholds only, set-out in point 4.3. of Annex II.

2.4.   Operation mode

All the tests are conducted at a temperature of between 293,2 K and 303,2 K (20 °C and 30 °C).

The test method includes the four following steps:

 

(a)

initial charge of the battery;

 

(b)

two runs of the applicable type I test cycle;

 

(c)

charging the battery;

 

(d)

calculation of the electric energy consumption.

If the vehicle moves between the steps, it shall be pushed to the next test area (without regenerative recharging).

2.4.1.   Initial charge of the battery

Charging the battery consists of the following procedures:

2.4.1.1.   Discharge of the battery

The battery is discharged while the vehicle is driven (on the test track, on a chassis dynamometer, etc.) at a steady speed of 70 percent ± 5 percent of the maximum design vehicle speed, as determined according to the test procedure in Appendix 1 to Annex X.

Discharging shall stop:

 

(a)

when the vehicle is unable to run at 65 percent of the maximum thirty minutes speed, or

 

(b)

when the standard on-board instrumentation indicates that the vehicle should be stopped, or

 

(c)

after 100 km.

By means of derogation if the manufacturer can prove to the technical service to the satisfaction of the approval authority that the vehicle is physically not capable of achieving the thirty minutes speed the maximum fifteen minute speed may be used instead.

2.4.1.2.   Application of a normal overnight charge

The battery shall be charged according to the following procedure:

2.4.1.2.1.   Normal overnight charge procedure

The charge shall be carried out:

 

(a)

with the on-board charger if fitted;

 

(b)

with an external charger recommended by the manufacturer, using the charging pattern prescribed for normal charging;

 

(c)

in an ambient temperature of between 293,2 K and 303,2 K (20 °C and 30 °C).

This procedure excludes all types of special charges that could be automatically or manually initiated, e.g. equalisation or servicing charges.

The vehicle manufacturer shall declare that no special charge procedure has occurred during the test.

2.4.1.2.2.   End-of-charge criteria

The end-of-charge criteria shall correspond to a charging time of 12 hours except where the standard instrumentation indicates clearly that the battery is not yet fully charged, in which case:

Equation Ap2-1:

Formula

2.4.1.2.3.   Fully charged battery

Propulsion batteries shall be deemed as fully charged when they have been charged according to the overnight charge procedure until the end-of-charge criteria are fulfilled.

2.4.2.   Application of the type I test cycle and measurement of the distance

The end of charging time t0 (plug off) shall be reported.

The chassis dynamometer shall be set according to the method in point 4.5.6. of Annex II.

Starting within four hours of t0, the applicable type I test shall be run twice on a chassis dynamometer, following which the distance covered in km (Dtest) is recorded. If the manufacturer can demonstrate to the approval authority that twice the type I test distance can physically not be attained by the vehicle, the test cycle shall be conducted once and subsequently followed by a partial second test run. The second test run may stop if the minimum state of charge of the propulsion battery is reached as referred to in Appendix 3.1.

2.4.3.   Charge of the battery

The test vehicle shall be connected to the mains within 30 minutes of the second run of the applicable type I test cycle.

The vehicle shall be charged according to the normal overnight charge procedure in point 2.4.1.2.

The energy measurement equipment, placed between the mains socket and the vehicle charger, measures the energy charge E delivered from the mains and its duration.

Charging shall stop 24 hours after the end of the previous charging time (t0).

Note:

In the event of a mains power cut, the 24 hour period may be extended in line with the duration of the cut. The validity of the charge shall be discussed between the technical services of the approval laboratory and the vehicle manufacturer to the satisfaction of the approval authority.

2.4.4.   Electric energy consumption calculation

Energy E in Wh and charging time measurements are to be recorded in the test report.

The electric energy consumption c shall be determined using the formula:

Equation Ap2-2:

Formula (expressed in Wh/km and rounded to the nearest whole number)

where Dtest is the distance covered during the test (in km).

 

  • (1) 
    International Electrotechnical Commission.

Appendix 3

Method of measuring the carbon dioxide emissions, fuel consumption, electric energy consumption and driving range of vehicles powered by a hybrid electric powertrain

  • 1. 
    Introduction

1.1.   This Appendix lays down specific provisions on the type-approval of hybrid electric L-category vehicles (HEV) as regards measuring carbon dioxide emissions, fuel consumption, electric energy consumption and driving range.

1.2.   As a general principle for type VII tests, HEVs shall be tested according to the specified type I test cycles and requirements and in particular Appendix 6 to Annex II, except where modified by this Appendix.

1.3.   OVC (externally chargeable) HEVs shall be tested under Conditions A and B.

The test results under Conditions A and B and the weighted average referred to in point 3 shall be given in the test report.

1.4.   Driving cycles and gear-shift points

 

1.4.1.

The driving cycle in Annex VI to Regulation (EU) No 168/2013 and Appendix 6 to Annex II to this Regulation applicable at the time of approval of the vehicle shall be used, including the gear-shifting points in point 4.5.5. of Annex II.

 

1.4.4.

For vehicle conditioning, a combination of the driving cycles in Appendix 6 to Annex II applicable at the time of approval of the vehicle shall be used as laid down in this Appendix.

  • 2. 
    Categories of hybrid electric vehicles (HEV)

Table Ap3-1

 

Vehicle charging

Off-Vehicle Charging (1) (OVC)

Not-off-vehicle Charging (2) (NOVC)

Operating mode switch

Without

With

Without

With

  • 3. 
    OVC (externally chargeable) HEV without an operating mode switch

3.1.   Two type I tests shall be performed under the following conditions:

 

(a)

condition A: the test shall be carried out with a fully charged electrical energy/power storage device;

 

(b)

condition B: the test shall be carried out with an electrical energy/power storage device in minimum state of charge (maximum discharge of capacity).

The profile of the state of charge (SOC) of the electrical energy/power storage device at different stages of the test is set out in Appendix 3.1.

3.2.   Condition A

3.2.1.   The procedure shall start with the discharge of the electrical energy/power storage device in accordance with point 3.2.1.1.:

3.2.1.1.   Discharge of the electrical energy/power storage device

The electrical energy/power storage device of the vehicle is discharged while driving (on the test track, on a chassis dynamometer, etc.) in any of the following conditions:

 

at a steady speed of 50 km/h until the fuel-consuming engine starts up,

 

if a vehicle cannot reach a steady speed of 50 km/h without the fuel-consuming engine starting up, the speed shall be reduced until it can run at a lower steady speed at which the fuel-consuming engine does not start up for a defined time or distance (to be determined by the technical service and the manufacturer to the satisfaction of the approval authority),

 

in accordance with the manufacturer’s recommendation.

The fuel-consuming engine shall be stopped within ten seconds of being automatically started.

3.2.2.   Conditioning of the vehicle

3.2.2.1.   The test vehicle shall be preconditioned by conducting the applicable type I test cycle in combination with the applicable gear-shifting in point 4.5.5. of Annex II.

3.2.2.2.   After this preconditioning and before testing, the vehicle shall be kept in a room in which the temperature remains relatively constant between 293,2 and 303,2 K (20 °C and 30 °C). This conditioning shall be carried out for at least six hours and continue until the temperatures of the engine oil and coolant, if any, are within ± 2 K of the temperature of the room, and the electrical energy/power storage device is fully charged as a result of the charging in point 3.2.2.4.

3.2.2.3.   During soak, the electrical energy/power storage device shall be charged in accordance with the normal overnight charging procedure described in point 3.2.2.4.

3.2.2.4.   Application of a normal overnight charge

The electrical energy/power storage device shall be charged according to the following procedure:

3.2.2.4.1.   Normal overnight charge procedure

The charging shall be carried out as follows:

 

(a)

with the on-board charger, if fitted or

 

(b)

with an external charger recommended by the manufacturer using the charging pattern prescribed for normal charging; and

 

(c)

in an ambient temperature of between 20 °C and 30 °C. This procedure shall exclude all types of special charge that could be automatically or manually initiated, e.g. equalisation or servicing charges. The manufacturer shall declare that no special charge procedure has occurred during the test.

3.2.2.4.2.   End-of-charge criteria

The end-of-charge criteria shall correspond to a charging time of twelve hours, except where the standard instrumentation indicates clearly that the electrical energy/power storage device is not yet fully charged, in which case:

Equation Ap3-1:

Formula

3.2.3.   Test procedure

3.2.3.1.   The vehicle shall be started up by the means provided for normal use by the driver. The first cycle starts on the initiation of the vehicle start-up procedure.

3.2.3.2.   The test procedures defined in either point 3.2.3.2.1. or 3.2.3.2.2. may be used.

3.2.3.2.1.   Sampling shall begin (BS) before or at the initiation of the vehicle start-up procedure and end on conclusion of the final idling period in the applicable type I driving cycle (end of sampling (ES)).

3.2.3.2.2.   Sampling shall begin (BS) before or at the initiation of the vehicle start-up procedure and continue over a number of repeat test cycles. It shall end on conclusion of the applicable type I driving cycle during which the battery reached the minimum state of charge in accordance with the following procedure (end of sampling (ES)):

 

3.2.3.2.2.1.

The electricity balance Q (Ah) is measured over each combined cycle, using the procedure in Appendix 3.2., and used to determine when the battery’s minimum state of charge has been reached.

 

3.2.3.2.2.2.

The battery’s minimum state of charge is considered to have been reached in combined cycle N if the electricity balance Q measured during combined cycle N + 1 is not more than a 3 percent discharge, expressed as a percentage of the nominal capacity of the battery (in Ah) in its maximum state of charge, as declared by the manufacturer. At the manufacturer’s request, additional test cycles may be run and their results included in the calculations in points 3.2.3.5. and 3.4., provided that the electricity balance for each additional test cycle shows less discharge of the battery than over the previous cycle.

 

3.2.3.2.2.3.

Between each pair of cycles, a hot soak period of up to ten minutes is allowed. The powertrain shall be switched off during this period.

3.2.3.3.   The vehicle shall be driven according to the applicable type I driving cycle and gear-shifting prescriptions in Annex II.

3.2.3.4.   The tailpipe emissions of the vehicle shall be analysed according to the provisions of Annex II in force at the time of approval of the vehicle.

3.2.3.5.   The CO2 emission and fuel consumption results from the test cycle(s) for Condition A shall be recorded (respectively m1 (g) and c1 (l)). Parameters m1 and c1 shall be the sums of the results of the N combined cycles run.

Equation Ap3-2:

Formula

Equation Ap3-3:

Formula

3.2.4.   Within the 30 minutes after the conclusion of the cycle, the electrical energy/power storage device shall be charged according to point 3.2.2.4. The energy measurement equipment, placed between the mains socket and the vehicle charger, measures the charge energy e1 (Wh) delivered from the mains.

3.2.5.   The electric energy consumption for Condition A shall be e1 (Wh).

3.3.   Condition B

3.3.1.   Conditioning of the vehicle

3.3.1.1.   The electrical energy/power storage device of the vehicle shall be discharged in accordance with point 3.2.1.1. At the manufacturer’s request, a conditioning in accordance with point 3.2.2.1. may be carried out before electrical energy/power storage discharge.

3.3.1.2.   Before testing, the vehicle shall be kept in a room in which the temperature remains relatively constant between 293,2 K and 303,2 K (20 °C and 30 °C). This conditioning shall be carried out for at least six hours and continue until the temperatures of the engine oil and coolant, if any, are within ± 2 K of the temperature of the room.

3.3.2.   Test procedure

3.3.2.1.   The vehicle shall be started up by the means provided for normal use by the driver. The first cycle starts on the initiation of the vehicle start-up procedure.

3.3.2.2.   Sampling shall begin (BS) before or at the initiation of the vehicle start-up procedure and end on conclusion of the final idling period in the applicable type I driving cycle (end of sampling (ES)).

3.3.2.3.   The vehicle shall be driven using the applicable type I driving cycle and gear-shifting prescriptions set out in Appendix 6 to Annex II.

3.3.2.4.   The tailpipe emissions of the vehicle shall be analysed according to the provisions of Annex II.

3.3.2.5.   The test results for Condition B shall be recorded (m2 (g) and c2 (l) respectively).

3.3.3.   Within 30 minutes of the end of the cycle, the electrical energy/power storage device shall be charged in accordance with point 3.2.2.4.

The energy measurement equipment, placed between the mains socket and the vehicle charger, measures the energy charge e2 (Wh) delivered from the mains.

3.3.4.   The electrical energy/power storage device of the vehicle shall be discharged in accordance with point 3.2.1.1.

3.3.5.   Within 30 minutes of the discharge, the electrical energy/power storage device shall be charged in accordance with point 3.2.2.4.

The energy measurement equipment, placed between the mains socket and the vehicle charger, measures the energy charge e3 (Wh) delivered from the mains.

3.3.6.   The electric energy consumption e4 (Wh) for Condition B is:

Equation Ap3-4:

Formula

3.4.   Test results

3.4.1.   The CO2 values shall be:

Equation Ap3-5:

Formula and

Equation Ap3-6:

Formula (mg/km)

where:

 

Dtest1 and Dtest2

=

the actual distances driven in the tests performed under Conditions A (point 3.2.) and B (point 3.3.) respectively, and

m1 and m2

=

test results determined in points 3.2.3.5. and 3.3.2.5. respectively.

3.4.2.1.   For testing in accordance with point 3.2.3.2.1:

The weighted CO2 values shall be calculated as follows:

Equation Ap3-7:

Formula

where:

 

M

=

mass emission of CO2 in grams per kilometre,

M1

=

mass emission of CO2 in grams per kilometre with a fully charged electrical energy/power storage device,

M2

=

mass emission of CO2 in grams per kilometre with an electrical energy/power storage device in minimum state of charge (maximum discharge of capacity),

De

=

electric range of the vehicle determined according to the procedure described in Appendix 3.3., where the manufacturer shall provide the means for performing the measurement with the vehicle running in pure electric operating state,

Dav

=

average distance between two battery recharges, Dav =:

 

4 km for an L-category vehicle with an engine capacity of < 150 cm3;

 

6 km for an L-category vehicle with an engine capacity of ≥ 150 cm3 and vmax < 130 km/h;

 

10 km for an L-category vehicle with an engine capacity of ≥ 150 cm3 and vmax ≥ 130 km/h.

3.4.2.2.   For testing in accordance with point 3.2.3.2.2.:

Equation Ap3-8:

Formula

where:

 

M

=

mass emission of CO2 in grams per kilometre,

M1

=

mass emission of CO2 in grams per kilometre with a fully charged electrical energy/power storage device,

M2

=

mass emission of CO2 in grams per kilometre with an electrical energy/power storage device in minimum state of charge (maximum discharge of capacity),

Dovc

=

OVC range according to the procedure described in Appendix 3.3.,

Dav

=

average distance between two battery recharges, Dav =:

 

4 km for an L-category vehicle with an engine capacity of < 150 cm3;

 

6 km for an L-category vehicle with an engine capacity of ≥ 150 cm3 and vmax < 130 km/h;

 

10 km for an L-category vehicle with an engine capacity of ≥ 150 cm3 and vmax ≥ 130 km/h.

3.4.3.   The fuel consumption values shall be:

Equation Ap3-9:

Formula

Equation Ap3-10:

Formula (l/100 km) for liquid fuels and (kg/100) km for gaseous fuel

where:

 

Dtest1 and Dtest2

=

the actual distances driven in the tests performed under Conditions A (point 3.2.) and B (point 3.3.) respectively, and

c1 and c2

=

test results determined in points 3.2.3.8. and 3.3.2.5. respectively.

3.4.4.   The weighted fuel consumption values shall be calculated as follows:

3.4.4.1.   For testing in accordance with point 3.2.3.2.1.:

Equation Ap3-11:

Formula

where:

 

C

=

fuel consumption in l/100 km,

C1

=

fuel consumption in l/100 km with a fully charged electrical energy/power storage device,

C2

=

fuel consumption in l/100 km with an electrical energy/power storage device in minimum state of charge (maximum discharge of capacity),

De

=

electric range of the vehicle determined according to the procedure described in Appendix 3.3., where the manufacturer shall provide the means for performing the measurement with the vehicle running in pure electric operating state,

Dav

=

average distance between two battery recharges, Dav =:

 

4 km for an L-category vehicle with an engine capacity of < 150 cm3;

 

6 km for an L-category vehicle with an engine capacity of ≥ 150 cm3 and vmax < 130 km/h;

 

10 km for an L-category vehicle with an engine capacity of ≥ 150 cm3 and vmax ≥ 130 km/h.

3.4.4.2.   For testing in accordance with point 3.2.3.2.2.:

Equation Ap3-12:

Formula

where:

 

C

=

fuel consumption in l/100 km,

C1

=

fuel consumption in l/100 km with a fully charged electrical energy/power storage device,

C2

=

fuel consumption in l/100 km with an electrical energy/power storage device in minimum state of charge (maximum discharge of capacity),

Dovc

=

OVC range according to the procedure described in Appendix 3.3.

Dav

=

average distance between two battery recharges, Dav =:

 

4 km for an L-category vehicle with an engine capacity of < 150 cm3;

 

6 km for an L-category vehicle with an engine capacity of ≥ 150 cm3 and vmax < 130 km/h;

 

10 km for an L-category vehicle with an engine capacity of ≥ 150 cm3 and vmax ≥ 130 km/h.

3.4.5.   The electric energy consumption values shall be:

Equation Ap3-13:

Formula and

Equation Ap3-14:

Formula (Wh/km)

with Dtest1 and Dtest2 the actual distances driven in the tests performed under Conditions A (point 3.2.) and B (point 3.3.) respectively, and e1 and e4 determined in points 3.2.5. and 3.3.6. respectively.

3.4.6.   The weighted electric energy consumption values shall be calculated as follows:

3.4.6.1.   For testing in accordance with point 3.2.3.2.1.:

Equation Ap3-15:

Formula

where:

 

E

=

electric consumption Wh/km,

E1

=

electric consumption Wh/km with a fully charged electrical energy/power storage device,

E4

=

electric consumption Wh/km with an electrical energy/power storage device in minimum state of charge (maximum discharge of capacity),

De

=

electric range of the vehicle determined according to the procedure described in Appendix 3.3., where the manufacturer shall provide the means for performing the measurement with the vehicle running in pure electric operating state,

Dav

=

average distance between two battery recharges, Dav =:

 

4 km for an L-category vehicle with an engine capacity of < 150 cm3;

 

6 km for an L-category vehicle with an engine capacity of ≥ 150 cm3 and vmax < 130 km/h;

 

10 km for an L-category vehicle with an engine capacity of ≥ 150 cm3 and vmax ≥ 130 km/h.

3.4.6.2.   For testing in accordance with point 3.2.3.2.2.:

Equation Ap3-16:

Formula

where:

 

E

=

electric consumption Wh/km,

E1

=

electric consumption Wh/km with a fully charged electrical energy/power storage device,

E4

=

electric consumption Wh/km with an electrical energy/power storage device in minimum state of charge (maximum discharge of capacity),

Dovc

=

OVC range according to the procedure described in Appendix 3.3.

Dav

=

average distance between two battery recharges, Dav =:

 

4 km for an L-category vehicle with an engine capacity of < 150 cm3;

 

6 km for an L-category vehicle with an engine capacity of ≥ 150 cm3 and vmax < 130 km/h;

 

10 km for an L-category vehicle with an engine capacity of ≥ 150 cm3 and vmax ≥ 130 km/h.

  • 4. 
    Externally chargeable (OVC HEV) with an operating mode switch

4.1.   Two tests shall be performed under the following conditions:

4.1.1.   Condition A: test carried out with a fully charged electrical energy/power storage device.

4.1.2.   Condition B: test carried out with an electrical energy/power storage device in minimum state of charge (maximum discharge of capacity).

4.1.3.   The operating mode switch shall be positioned in accordance with Table Ap11-2, point 3.2.1.3. of Appendix 11 of Annex II.

4.2.   Condition A

4.2.1.   If the electric range of the vehicle, as measured in accordance with Appendix 3.3., is higher than one complete cycle, the type I test for electric energy measurement may be carried out in pure electric mode at the request of the manufacturer after agreement of the technical service and to the satisfaction of the approval authority. In this case, the values of M1 and C1 in point 4.4. shall be taken as equal to 0.

4.2.2.   The procedure shall start with the discharge of the electrical energy/power storage device of the vehicle as described in point 4.2.2.1.

 

4.2.2.1.

The electrical energy/power storage device of the vehicle is discharged while driving with the switch in pure electric position (on the test track, on a chassis dynamometer, etc.) at a steady speed of 70 percent ± 5 percent of the maximum design vehicle speed in pure electric mode, determined in accordance with the test procedure to measure the maximum design vehicle speed set out in Appendix 1 to Annex X.

Discharge shall stop in any of the following conditions:

 

when the vehicle is unable to run at 65 percent of the maximum thirty minutes speed,

 

when the standard on-board instrumentation indicates that the vehicle should be stopped,

 

after 100 km.

If the vehicle is not equipped with a pure electric mode, the electrical energy/power storage device shall be discharged by driving the vehicle (on the test track, on a chassis dynamometer, etc.) at any of the following conditions:

 

at a steady speed of 50 km/h until the fuel-consuming engine starts up,

 

if a vehicle cannot reach a steady speed of 50 km/h without the fuel-consuming engine starting up, the speed shall be reduced until it can run at a lower steady speed at which the fuel-consuming engine does not start up for a defined time or distance (to be determined by the technical service and the manufacturer to the satisfaction of the approval authority),

 

in accordance with the manufacturer’s recommendation.

The fuel-consuming engine shall be stopped within ten seconds of being automatically started. By means of derogation if the manufacturer can prove to the technical service to the satisfaction of the approval authority that the vehicle is physically not capable of achieving the thirty minutes speed the maximum fifteen minute speed may be used instead.

4.2.3.   Conditioning of the vehicle

 

4.2.3.1.

The test vehicle shall be preconditioned by conducting the applicable type I test cycle in combination with the applicable gear-shifting prescriptions in point 4.5.5. of Annex II.

 

4.2.3.2.

After this preconditioning and before testing, the vehicle shall be kept in a room in which the temperature remains relatively constant between 293,2 K and 303,2 K (20 °C and 30 °C). This conditioning shall be carried out for at least six hours and continue until the temperatures of the engine oil and coolant, if any, are within ± 2 K of the temperature of the room, and the electrical energy/power storage device is fully charged as a result of the charging prescribed in point 4.2.3.3.

 

4.2.3.3.

During soak, the electrical energy/power storage device shall be charged using the normal overnight charging procedure as defined in point 3.2.2.4.

4.2.4.   Test procedure

 

4.2.4.1.

The vehicle shall be started up by the means provided for normal use by the driver. The first cycle starts on the initiation of the vehicle start-up procedure.

 

4.2.4.2.

The test procedures defined in either point 4.2.4.2.1. or 4.2.4.2.2. may be used.

 

4.2.4.2.1.

Sampling shall begin (BS) before or at the initiation of the vehicle start-up procedure and end on conclusion of the final idling period in the applicable type I driving cycle (end of sampling (ES)).

 

4.2.4.2.2.

Sampling shall begin (BS) before or at the initiation of the vehicle start-up procedure and continue over a number of repeat test cycles. It shall end on conclusion of the applicable type I driving cycle during which the battery reached the minimum state of charge in accordance with the following procedure (end of sampling (ES)):

 

4.2.4.2.2.1.

the electricity balance Q (Ah) is measured over each combined cycle, using the procedure in Appendix 3.2., and used to determine when the battery’s minimum state of charge has been reached.

 

4.2.4.2.2.2.

the battery’s minimum state of charge is considered to have been reached in combined cycle N if the electricity balance measured during combined cycle N + 1 is not more than a 3 percent discharge, expressed as a percentage of the nominal capacity of the battery (in Ah) in its maximum state of charge, as declared by the manufacturer. At the manufacturer’s request, additional test cycles may be run and their results included in the calculations in points 4.2.4.5. and 4.4., provided that the electricity balance for each additional test cycle shows less discharge of the battery than over the previous cycle.

 

4.2.4.2.2.3.

between each pair of cycles, a hot soak period of up to ten minutes is allowed. The powertrain shall be switched off during this period.

 

4.2.4.3.

The vehicle shall be driven using the applicable driving cycle and gear-shifting prescriptions as defined in appendix 9 to Annex II.

 

4.2.4.4.

The exhaust gases shall be analysed according to Annex II in force at the time of approval of the vehicle.

 

4.2.4.5.

The CO2 emission and fuel consumption results on the test cycle for Condition A shall be recorded (m1 (g) and c1 (l) respectively). In the case of testing in accordance with point 4.2.4.2.1., m1 and c1 are the results of the single combined cycle run. In the case of testing in accordance with point 4.2.4.2.2., m1 and c1 are the sums of the results of the N combined cycles run:

Equation Ap3-17: Formula Equation Ap3-18: Formula

4.2.5.   Within 30 minutes of the end of the cycle, the electrical energy/power storage device shall be charged in accordance with point 3.2.2.4.

The energy measurement equipment, placed between the mains socket and the vehicle charger, shall measure the energy charge e1 (Wh) delivered from the mains.

4.2.6.   The electric energy consumption for Condition A shall be e1 (Wh).

4.3.   Condition B

4.3.1.   Conditioning of the vehicle

 

4.3.1.1.

The electrical energy/power storage device of the vehicle shall be discharged in accordance with point 4.2.2.1.

At the manufacturer’s request, conditioning in accordance with point 4.2.3.1. may be carried out before electrical energy/power storage discharge.

 

4.3.1.2.

Before testing, the vehicle shall be kept in a room in which the temperature shall remain relatively constant between 293,2 K and 303,2 K (20 °C and 30 °C). This conditioning shall be carried out for at least six hours and continue until the temperatures of the engine oil and coolant, if any, are within ± 2 K of the temperature of the room.

4.3.2.   Test procedure

 

4.3.2.1.

The vehicle shall be started up by the means provided for normal use by the driver. The first cycle starts on the initiation of the vehicle start-up procedure.

 

4.3.2.2.

Sampling shall begin (BS) before or at the initiation of the vehicle start-up procedure and end on conclusion of the final idling period in the applicable type I driving cycle (end of sampling (ES)).

 

4.3.2.3.

The vehicle shall be driven using the applicable driving cycle and gear-shifting prescriptions as defined in Annex II.

 

4.3.2.4.

The exhaust gases shall be analysed in accordance with the provisions of Annex II in force at the time of approval of the vehicle.

 

4.3.2.5.

The CO2 emission and fuel consumption results on the test cycle(s) for Condition B shall be recorded (m2 (g) and c2 (l) respectively).

4.3.3.   Within 30 minutes of the end of the cycle, the electrical energy/power storage device shall be charged in accordance with point 3.2.2.4.

The energy measurement equipment, placed between the mains socket and the vehicle charger, shall measure the energy charge e2 (Wh) delivered from the mains.

4.3.4.   The electrical energy/power storage device of the vehicle shall be discharged in accordance with point 4.2.2.1.

4.3.5.   Within 30 minutes of the discharge, the electrical energy/power storage device shall be charged in accordance with point 3.2.2.4. The energy measurement equipment, placed between the mains socket and the vehicle charger, shall measure the energy charge e3 (Wh) delivered from the mains.

4.3.6.   The electric energy consumption e4 (Wh) for Condition B shall be:

Equation Ap3-19:

Formula

4.4.   Test results

4.4.1.   The CO2 values shall be:

Equation Ap3-20:

Formula (mg/km) and

Equation Ap3-21:

Formula (mg/km)

where:

 

Dtest1 and Dtest2

=

the actual distances driven in the tests performed under Conditions A (point 4.2.) and B (point 4.3.) respectively, and

m1 and m2

=

test results determined in points 4.2.4.5. and 4.3.2.5. respectively

4.4.2.   The weighted CO2 values shall be calculated as follows:

 

4.4.2.1.

For testing in accordance with point 4.2.4.2.1.:

Equation Ap3-22: Formula

where:

 

M

=

mass emission of CO2 in grams per kilometre,

M1

=

mass emission of CO2 in grams per kilometre with a fully charged electrical energy/power storage device,

M2

=

mass emission of CO2 in grams per kilometre with an electrical energy/power storage device in minimum state of charge (maximum discharge of capacity),

De

=

electric range of the vehicle determined according to the procedure described in Appendix 3.3., where the manufacturer shall provide the means for performing the measurement with the vehicle running in pure electric operating state,

Dav

=

average distance between two battery recharges, Dav =:

 

4 km for an L-category vehicle with an engine capacity of < 150 cm3;

 

6 km for an L-category vehicle with an engine capacity of ≥ 150 cm3 and vmax < 130 km/h;

 

10 km for an L-category vehicle with an engine capacity of ≥ 150 cm3 and vmax ≥ 130 km/h.

 

4.4.2.2.

For testing in accordance with point 4.2.4.2.2.:

Equation Ap3-23: Formula

where:

 

M

=

mass emission of CO2 in grams per kilometre,

M1

=

mass emission of CO2 in grams per kilometre with a fully charged electrical energy/power storage device,

M2

=

mass emission of CO2 in grams per kilometre with an electrical energy/power storage device in minimum state of charge (maximum discharge of capacity),

Dovc

=

OVC range according to the procedure described in Appendix 3.3.

Dav

=

average distance between two battery recharges, Dav =:

 

4 km for an L-category vehicle with an engine capacity of < 150 cm3;

 

6 km for an L-category vehicle with an engine capacity of ≥ 150 cm3 and vmax < 130 km/h;

 

10 km for an L-category vehicle with an engine capacity of ≥ 150 cm3 and vmax ≥ 130 km/h.

4.4.3.   The fuel consumption values shall be:

Equation Ap3-24:

Formula and

Equation Ap3-25:

Formula (l/100 km)

where:

 

Dtest1 and Dtest2

=

the actual distances driven in the tests performed under Conditions A (point 4.2.) and B (point 4.3.) respectively.

c1 and c2

=

test results determined in points 4.2.4.5. and 4.3.2.5. respectively.

4.4.4.   The weighted fuel consumption values shall be calculated as follows:

 

4.4.4.1.

For testing in accordance with point 4.2.4.2.1.:

Equation Ap3-26: Formula

where:

 

C

=

fuel consumption in l/100 km,

C1

=

fuel consumption in l/100 km with a fully charged electrical energy/power storage device,

C2

=

fuel consumption in l/100 km with an electrical energy/power storage device in minimum state of charge (maximum discharge of capacity),

De

=

electric range of the vehicle determined according to the procedure described in Appendix 3.3., where the manufacturer shall provide the means for performing the measurement with the vehicle running in pure electric operating state,

Dav

=

average distance between two battery recharges, Dav =:

 

4 km for an L-category vehicle with an engine capacity of < 150 cm3;

 

6 km for an L-category vehicle with an engine capacity of ≥ 150 cm3 and vmax < 130 km/h;

 

10 km for an L-category vehicle with an engine capacity of ≥ 150 cm3 and vmax ≥ 130 km/h.

 

4.4.4.2.

For testing in accordance with point 4.2.4.2.2.:

Equation Ap3-27: Formula

where:

 

C

=

fuel consumption in l/100 km,

C1

=

fuel consumption in l/100 km with a fully charged electrical energy/power storage device,

C2

=

fuel consumption in l/100 km with an electrical energy/power storage device in minimum state of charge (maximum discharge of capacity),

Dovc

=

OVC range according to the procedure described in Appendix 3.3.,

Dav

=

average distance between two battery recharges, Dav =:

 

4 km for an L-category vehicle with an engine capacity of < 150 cm3;

 

6 km for an L-category vehicle with an engine capacity of ≥ 150 cm3 and vmax < 130 km/h;

 

10 km for an L-category vehicle with an engine capacity of ≥ 150 cm3 and vmax ≥ 130 km/h.

4.4.5.   The electric energy consumption values shall be:

Equation Ap3-28:

Formula and

Equation Ap3-29:

Formula (Wh/km)

where:

 

Dtest1 and Dtest2

=

the actual distances driven in the tests performed under Conditions A (point 4.2.) and B (point 4.3.) respectively, and

e1 and e4

=

test results determined in points 4.2.6. and 4.3.6. respectively.

4.4.6.   The weighted electric energy consumption values shall be calculated as follows:

 

4.4.6.1.

For testing in accordance with point 4.2.4.2.1.:

Equation Ap3-30: Formula

where:

 

E

=

electric consumption Wh/km,

E1

=

electric consumption Wh/km with a fully charged electrical energy/power storage device,

E4

=

electric consumption Wh/km with an electrical energy/power storage device in minimum state of charge (maximum discharge of capacity),

De

=

electric range of the vehicle determined according to the procedure described in Appendix 3.3., where the manufacturer shall provide the means for performing the measurement with the vehicle running in pure electric operating state,

Dav

=

average distance between two battery recharges, Dav =:

 

4 km for an L-category vehicle with an engine capacity of < 150 cm3;

 

6 km for an L-category vehicle with an engine capacity of ≥ 150 cm3 and vmax < 130 km/h;

 

10 km for an L-category vehicle with an engine capacity of ≥ 150 cm3 and vmax ≥ 130 km/h.

 

4.4.6.2.

For testing in accordance with point 4.2.4.2.2.:

Equation Ap3-31: Formula

where:

 

E

=

electric consumption Wh/km,

E1

=

electric consumption Wh/km with a fully charged electrical energy/ power storage device,

E4

=

electric consumption Wh/km with an electrical energy/power storage device in minimum state of charge (maximum discharge of capacity),

Dovc

=

OVC range according to the procedure described in Appendix 3.3.,

Dav

=

average distance between two battery recharges, Dav =:

 

4 km for an L-category vehicle with an engine capacity of < 150 cm3;

 

6 km for an L-category vehicle with an engine capacity of ≥ 150 cm3 and vmax < 130 km/h;

 

10 km for an L-category vehicle with an engine capacity of ≥ 150 cm3 and vmax ≥ 130 km/h.

  • 5. 
    Not externally chargeable hybrid electric vehicle (NOVC HEV) without an operating mode switch

5.1.   The test vehicle shall be preconditioned by conducting the applicable type I test cycle in combination with the applicable gear-shifting prescriptions in point 4.5.5. of Annex II.

5.1.1.   Carbon dioxide (CO2) emissions and fuel consumption shall be determined separately for parts 1, 2 and 3, if applicable, of the applicable driving cycle in Appendix 6 to Annex II.

5.2.   For preconditioning, at least two consecutive complete driving cycles shall be carried out without intermediate soak, using the applicable driving cycle and gear-shifting prescriptions set out in point 4.5.5. of Annex II.

5.3.   Test results

5.3.1.   The test results (fuel consumption C (l/100 km for liquid fuels or kg/100 km for gaseous fuels) and CO2-emission M (g/km)) of this test shall be corrected in line with the energy balance ΔEbatt of the battery of the vehicle.

The corrected values C0 (l/100 km or kg/100 km) and M0 (g/km) shall correspond to a zero energy balance (ΔEbatt = 0) and shall be calculated using a correction coefficient determined by the manufacturer for storage systems other than electric batteries as follows: ΔEbatt shall represent ΔEstorage, the energy balance of the electric energy storage device.

 

5.3.1.1.

The electricity balance Q (Ah), measured using the procedure in Appendix 3.2. to this Appendix, shall be used as a measure of the difference between the vehicle battery’s energy content at the end of the cycle and that at the beginning of the cycle. The electricity balance is to be determined separately for the individual parts 1, 2 and 3, if applicable, of the type I test cycle in Annex II.

5.3.2.   the uncorrected measured values C and M may be taken as the test results under the following conditions:

 

(a)

the manufacturer can demonstrate to the satisfaction of the approval authority that there is no relation between the energy balance and fuel consumption,

 

(b)

ΔEbatt always corresponds to a battery charging,

 

(c)

ΔEbatt always corresponds to a battery discharging and ΔEbatt is within 1 percent of the energy content of the consumed fuel (i.e. the total fuel consumption over one cycle).

The change in battery energy content ΔEbatt shall be calculated from the measured electricity balance Q as follows:

Equation Ap3-32:

Formula

where:

 

ETEbatt

=

the total energy storage capacity of the battery (MJ) and

Vbatt

=

the nominal battery voltage (V).

5.3.3.   Fuel consumption correction coefficient (Kfuel) defined by the manufacturer

 

5.3.3.1.

The fuel consumption correction coefficient (Kfuel) shall be determined from a set of n measurements, which shall contain at least one measurement with Qi < 0 and at least one with Qj > 0.

If this second measurement cannot be taken on the applicable test type I driving cycle used in this test, the technical service shall judge the statistical significance of the extrapolation necessary to determine the fuel consumption value at ΔEbatt = 0 to the satisfaction of the approval authority.

 

5.3.3.2.

The fuel consumption correction coefficient (Kfuel) shall be defined as:

Equation Ap3-33:

Formula (l/100 km/Ah)

where:

 

Ci

=

fuel consumption measured during i-th manufacturer’s test (l/100 km or kg/100km),

Qi

=

electricity balance measured during i-th manufacturer’s test (Ah),

n

=

number of data.

The fuel consumption correction coefficient shall be rounded to four significant figures (e.g. 0.xxxx or xx.xx). The technical service shall judge the statistical significance of the fuel consumption correction coefficient to the satisfaction of the approval authority.

 

5.3.3.3.

Separate fuel consumption correction coefficients shall be determined for the fuel consumption values measured over parts 1, 2 and 3, if applicable, of the type I test cycle in Annex II.

5.3.4.   Fuel consumption at zero battery energy balance (C0)

 

5.3.4.1.

Fuel consumption C0 at ΔEbatt = 0 is determined by the following equation:

Equation Ap3-34:

Formula (l/100 km or kg/100 km)

where:

 

C

=

fuel consumption measured during test (l/100 km for liquid fuels and kg/100 km for gaseous fuels),

Q

=

electricity balance measured during test (Ah).

 

5.3.4.2.

Fuel consumption at zero battery energy balance shall be determined separately for the fuel consumption values measured over parts 1, 2 or 3, if applicable, of the type I test cycle in Annex II.

5.3.5.   CO2-emission correction coefficient (KCO2 ) defined by the manufacturer

 

5.3.5.1.

The CO2-emission correction coefficient (KCO2 ) shall be determined as follows from a set of n measurements, which shall contain at least one measurement with Qi < 0 and at least one with Qj > 0.

If this second measurement cannot be taken on the driving cycle used in this test, the technical service shall judge the statistical significance of the extrapolation necessary to determine the CO2-emission value at ΔEbatt = 0 to the satisfaction of the approval authority.

 

5.3.5.2.

The CO2-emission correction coefficient (KCO2 ) is defined as:

Equation Ap3-35:

Formula (g/km/Ah)

where:

 

Mi

=

CO2-emission measured during i-th manufacturer’s test (g/km),

Qi

=

electricity balance during i-th manufacturer’s test (Ah),

n

=

number of data.

The CO2-emission correction coefficient shall be rounded to four significant figures (e.g. 0.xxxx or xx.xx). The technical service shall judge the statistical significance of the CO2-emission correction coefficient to the satisfaction of the approval authority.

 

5.3.5.3.

Separate CO2-emission correction coefficients shall be determined for the fuel consumption values measured over parts 1, 2 and 3, if applicable, of the type driving cycle in Annex II.

5.3.6.   CO2-emission at zero battery energy balance (M0)

 

5.3.6.1.

The CO2-emission M0 at ΔEbatt = 0 is determined by the following equation:

Equation Ap3-36:

Formula (g/km)

where:

 

C

=

fuel consumption measured during test (l/100 km for liquid fuels and kg/100 km for gaseous fuels),

Q

=

electricity balance measured during test (Ah).

 

5.3.6.2.

CO2 emissions at zero battery energy balance shall be determined separately for the CO2 emission values measured over part 1, 2 and 3, if applicable, of the type I test cycle set out in Appendix 6 to Annex II.

  • 6. 
    Not Externally Chargeable (not OVC HEV) with an operating mode switch

6.1.   These vehicles shall be tested in hybrid mode in accordance with Appendix 1, using the applicable driving cycle and gear-shifting prescriptions in point 4.5.5. of Annex II. If several hybrid modes are available, the test shall be carried out in the mode that is automatically set after the ignition key is turned on (normal mode).

6.1.1.   Carbon dioxide (CO2) emissions and fuel consumption shall be determined separately for parts 1, 2 and 3 of the type I test cycle in Annex II.

6.2.   For preconditioning, at least two consecutive complete driving cycles shall be carried out without intermediate soak, using the applicable type I test cycle and gear-shifting prescriptions in Annex II.

6.3.   Test results

6.3.1.   The fuel consumption C (l/100 km) and CO2-emission M (g/km)) results of this test shall be corrected in line with the energy balance ΔEbatt of the battery of the vehicle.

The corrected values (C0 (l/100 km for liquid fuels or kg/100 km for gaseous fuels) and M0 (g/km)) shall correspond to a zero energy balance (ΔEbatt = 0), and are to be calculated using a correction coefficient determined by the manufacturer as defined in 6.3.3 and 6.3.5.

For storage systems other than electric batteries, ΔEbatt shall represent ΔEstorage, the energy balance of the electric energy storage device.

 

6.3.1.1.

The electricity balance Q (Ah), measured using the procedure in Appendix 3.2., shall be used as a measure of the difference between the vehicle battery’s energy content at the end of the cycle and that at the beginning of the cycle. The electricity balance is to be determined separately for parts 1, 2 and 3 of the applicable type I test cycle set out in Annex II.

6.3.2.   The uncorrected measured values C and M may be taken as the test results under the following conditions:

 

(a)

the manufacturer can prove that there is no relation between the energy balance and fuel consumption,

 

(b)

ΔEbatt always corresponds to a battery charging,

 

(c)

ΔEbatt always corresponds to a battery discharging and ΔEbatt is within 1 percent of the energy content of the consumed fuel (i.e. the total fuel consumption over one cycle).

The change in battery energy content ΔEbatt can be calculated from the measured electricity balance Q as follows:

Equation Ap3-37: Formula

where:

 

ETEbatt

=

the total energy storage capacity of the battery (MJ), and

Vbatt

=

the nominal battery voltage(V).

6.3.3.   Fuel consumption correction coefficient (Kfuel) defined by the manufacturer

 

6.3.3.1.

The fuel consumption correction coefficient (Kfuel) shall be determined from a set of n measurements, which shall contain at least one measurement with Qi < 0 and at least one with Qj > 0.

If this second measurement cannot be taken on the driving cycle used in this test, the technical service shall judge the statistical significance of the extrapolation necessary to determine the fuel consumption value at ΔEbatt = 0 to the satisfaction of the approval authority.

 

6.3.3.2.

The fuel consumption correction coefficient (Kfuel) shall be defined as:

Equation Ap3-38:

Formula in (l/100 km/Ah)

where:

 

Ci

=

fuel consumption measured during i-th manufacturer’s test (l/100 km for liquid fuels and kg/100 km for gaseous fuels)

Qi

=

electricity balance measured during i-th manufacturer’s test (Ah)

n

=

number of data

The fuel consumption correction coefficient shall be rounded to four significant figures (e.g. 0.xxxx or xx.xx). The statistical significance of the fuel consumption correction coefficient shall be judged by the technical service to the satisfaction of the approval authority.

 

6.3.3.3.

Separate fuel consumption correction coefficients shall be determined for the fuel consumption values measured over parts 1, 2 and 3, if applicable, for the type I test cycle set out in Annex II.

6.3.4.   Fuel consumption at zero battery energy balance (C0)

 

6.3.4.1.

The fuel consumption C0 at ΔEbatt = 0 is determined by the following equation:

Equation AP-39:

Formula (in l/100 km for liquid fuels and kg/100 km for gaseous fuels)

where:

 

C

=

fuel consumption measured during test (in l/100 km or kg/100 km)

Q

=

electricity balance measured during test (Ah)

 

6.3.4.2.

Fuel consumption at zero battery energy balance shall be determined separately for the fuel consumption values measured over parts 1, 2 and 3, if applicable, for the type I test cycle set out in Annex II.

6.3.5.   CO2-emission correction coefficient (KCO2 ) defined by the manufacturer

 

6.3.5.1.

The CO2-emission correction coefficient (KCO2 ) shall be determined as follows from a set of n measurements. This set shall contain at least one measurement with Qi < 0 and one with Qj > 0.

If this second measurement cannot be taken on the type I test cycle used in this test, the technical service shall judge the statistical significance of the extrapolation necessary to determine the CO2-emission value at ΔEbatt = 0 to the satisfaction of the approval authority.

 

6.3.5.2.

The CO2-emission correction coefficient (KCO2 ) shall be defined as:

Equation AP-40:

Formula in (g/km/Ah)

where:

 

Mi

=

CO2-emission measured during i-th manufacturer’s test (g/km)

Qi

=

electricity balance during i-th manufacturer’s test (Ah)

N

=

number of data

The CO2-emission correction coefficient shall be rounded to four significant figures (e.g. 0.xxxx or xx.xx). The statistical significance of the CO2-emission correction coefficient shall be judged by the technical service to the satisfaction of the approval authority.

 

6.3.5.3.

Separate CO2-emission correction coefficients shall be determined for the fuel consumption values measured over parts 1, 2 and 3 of the applicable type I test cycle.

6.3.6.   CO2 emission at zero battery energy balance (M0)

 

6.3.6.1.

The CO2 emission M0 at ΔEbatt = 0 is determined by the following equation:

Equation AP-41:

Formula in (g/km)

where:

 

C

:

fuel consumption measured during test (l/100 km)

Q

:

electricity balance measured during test (Ah)

 

6.3.6.2.

CO2 emission at zero battery energy balance shall be determined separately for the CO2-emission values measured over parts 1, 2 and 3, if applicable, for the type I test cycle set out in Annex II.

 

  • (1) 
    Also known as ‘externally chargeable’.
  • (2) 
    Also known as ‘not externally chargeable’.

Appendix 3.1

Electrical energy/power storage device State Of Charge (SOC) profile for an Externally chargeable Hybrid Electric Vehicle (OVC HEV) in a type VII test

  • 1. 
    State of charge (SOC) profile for OVC HEV type VII test

The SOC profiles for OVC-HEVs tested under Conditions A and B of the test type VII shall be:

1.1.   Condition A:

Figure Ap3.1-1

Condition A of the type VII test

Image

 

(1)

initial state of charge of the electrical energy/power storage device;

 

(2)

discharge in accordance with point 3.2.1. or 4.2.2. of Appendix 3;

 

(3)

vehicle conditioning in accordance with point 3.2.2.or 4.2.3. of Appendix 3;

 

(4)

charge during soak in accordance with point 3.2.2.3. and 3.2.2.4. or 4.2.3.2. and 4.2.3.3. of Appendix 3;

 

(5)

test in accordance with point 3.2.3. or 4.2.4. of Appendix 3;

 

(6)

charging in accordance with point 3.2.4. or 4.2.5. of Appendix 3.

1.2.   Condition B:

Figure Ap3.1-2

Condition B of the type VII test

Image

 

(1)

initial state of charge;

 

(2)

vehicle conditioning in accordance with point 3.3.1.1. or 4.3.1.1. (optional) of Appendix 3;

 

(3)

discharge in accordance with point 3.3.1.1. or 4.3.1.1. of Appendix 3;

 

(4)

soak in accordance with point 3.3.1.2. or 4.3.1.2. of Appendix 3;

 

(5)

test in accordance with point 3.3.2. or 4.3.2. of Appendix 3;

 

(6)

charging in accordance with point 3.3.3. or 4.3.3. of Appendix 3;

 

(7)

discharging in accordance with point 3.3.4. or 4.3.4. of Appendix 3;

 

(8)

charging in accordance with point 3.3.5. or 4.3.5. of Appendix 3;

Appendix 3.2

Method for measuring the electricity balance of the battery of OVC and NOVC HEV

  • 1. 
    Introduction
 

1.1.

This Appendix sets out the method and required instrumentation for measuring the electricity balance of Off-vehicle Charging Hybrid Electric Vehicles (OVC HEV) and Not-Off-vehicle Charging Hybrid Electric Vehicles (NOVC HEV). Measurement of the electricity balance is necessary:

 

(a)

to determine when the battery’s minimum state of charge has been reached during the test procedure in points 3.3. and 4.3. of Appendix 3, and

 

(b)

to adjust the fuel consumption and CO2-emissions measurements in line with the change in battery energy content during the test, using the method in points 5.3.1.1. and 6.3.1.1. of Appendix 3.

 

1.2.

The method described in this Appendix shall be used by the manufacturer for taking the measurements to determine the correction factors Kfuel and KCO2 , as defined in points 5.3.3.2., 5.3.5.2., 6.3.3.2., and 6.3.5.2. of Appendix 3.

The technical service shall check whether these measurements have been taken in accordance with the procedure described in this Appendix.

 

1.3.

The method described in this Appendix shall be used by the technical service for measuring the electricity balance Q, as defined in the relevant points of Appendix 3.

  • 2. 
    Measurement equipment and instrumentation
 

2.1.

During the tests described in points 3 to 6 of Appendix 3, the battery current shall be measured using a current transducer of the clamp-on or the closed type. The current transducer (i.e. the current sensor without data acquisition equipment) shall have a minimum accuracy of 0,5 percent of the measured value or 0,1 percent of the maximum value of the scale.

Original equipment manufacturer diagnostic testers are not to be used for the purpose of this test.

 

2.1.1.

The current transducer shall be fitted on one of the wires directly connected to the battery. To make it easier to measure the battery current with external equipment, the manufacturer shall integrate appropriate, safe and accessible connection points in the vehicle. If that is not feasible, the manufacturer is obliged to support the technical service by providing the means to connect a current transducer to the wires connected to the battery as described in point 2.1.

 

2.1.2.

The output of the current transducer shall be sampled with a minimum sample frequency of 5 Hz. The measured current shall be integrated over time, yielding the measured value of Q, expressed in Ampere hours (Ah).

 

2.1.3.

The temperature at the location of the sensor shall be measured and sampled with the same sample frequency as the current, so that this value can be used for possible compensation of the drift of current transducers and, if applicable, the voltage transducer used to convert the output of the current transducer.

 

2.2.

The technical service shall be provided with a list of the instrumentation (manufacturer, model number, serial number) used by the manufacturer for determining the correction factors Kfuel and KCO2 set out in Appendix 3 and the last calibration dates of the instruments, where applicable.

  • 3. 
    Measurement procedure
 

3.1.

Measurement of the battery current shall start at the beginning of the test and end immediately after the vehicle has driven the complete driving cycle.

 

3.2.

Separate values of Q shall be logged over the parts (cold/warm or phase 1 and, if applicable, phases 2 and 3) of the type I test cycle set out in Annex II.

Appendix 3.3

Method of measuring the electric range of vehicles powered by an electric powertrain only or by a hybrid electric powertrain and the OVC range of vehicles powered by a hybrid electric powertrain

  • 1. 
    Measurement of the electric range

The following test method set out in point 4 shall be used to measure the electric range, expressed in km, of vehicles powered by an electric power train only or the electric range and OVC range of vehicles powered by a hybrid electric powertrain with off-vehicle charging (OVC HEV) as defined in Appendix 3.

  • 2. 
    Parameters, units and accuracy of measurements

Parameters, units and accuracy of measurements shall be as follows:

Table Ap3.3.-1

Parameters, units and accuracy of measurements

 

Parameter

Unit

Accuracy

Resolution

Time

s

± 0,1 s

0,1 s

Distance

m

± 0,1 percent

1 m

Temperature

K

± 1 K

1 K

Speed

km/h

± 1 percent

0,2 km/h

Mass

kg

± 0,5 percent

1 kg

  • 3. 
    Test conditions

3.1.   Condition of the vehicle

 

3.1.1.

The vehicle tyres shall be inflated to the pressure specified by the vehicle manufacturer when the tyres are at the ambient temperature.

 

3.1.2.

The viscosity of the oils for the mechanical moving parts shall conform to the vehicle manufacturer’s specifications.

 

3.1.3.

The lighting and signalling and auxiliary devices shall be off, except those required for the testing and usual daytime operation of the vehicle.

 

3.1.4.

All energy storage systems for other than traction purposes (electric, hydraulic, pneumatic, etc.) shall be charged to their maximum level as specified by the manufacturer.

 

3.1.5.

If the batteries are operated above the ambient temperature, the operator shall follow the procedure recommended by the vehicle manufacturer in order to keep the battery temperature in the normal operating range. The manufacturer shall be in a position to attest that the thermal management system of the battery is neither disabled nor reduced.

 

3.1.6.

The vehicle shall have travelled at least 300 km in the seven days before the test with the batteries installed for the test.

3.2.   Climatic conditions

For testing performed outdoors, the ambient temperature shall be between 278,2 K and 305,2 K (5 °C and 32 °C).

The indoor testing shall be performed at a temperature of between 275,2 K and 303,2 K (2 °C and 30 °C).

  • 4. 
    Operation modes

The test method includes the following steps:

 

(a)

initial charge of the battery;

 

(b)

application of the cycle and measurement of the electric range.

If the vehicle shall move between the steps, it shall be pushed to the next test area (without regenerative recharging).

4.1.   Initial charge of the battery

Charging the battery consists of the following procedure:

4.1.1.   The ‘initial charge’ of the battery means the first charge of the battery, on reception of the vehicle. Where several combined tests or measurements are carried out consecutively, the first charge shall be an ‘initial charge’ and the subsequent charges may follow the ‘normal overnight charge’ procedure set out in 3.2.2.4. of Appendix 3.

4.1.2.   Discharge of the battery

4.1.2.1.   For pure electric vehicles:

 

4.1.2.1.1.

The procedure starts with the discharge of the battery of the vehicle while driving (on the test track, on a chassis dynamometer, etc.) at a steady speed of 70 percent ± 5 percent of the maximum design vehicle speed, which is to be determined according to the test procedure in Appendix 1 to Annex X.

 

4.1.2.1.2.

Discharging shall stop under any of the following conditions:

 

(a)

when the vehicle is unable to run at 65 percent of the maximum thirty minutes speed;

 

(b)

when the standard on-board instrumentation indicates that the vehicle should be stopped;

 

(c)

after 100 km.

By means of derogation if the manufacturer can prove to the technical service to the satisfaction of the approval authority that the vehicle is physically not capable of achieving the thirty minutes speed the maximum fifteen minute speed may be used instead.

4.1.2.2.   For externally chargeable hybrid electric vehicles (OVC HEV) without an operating mode switch as defined in Appendix 3:

 

4.1.2.2.1.

The manufacturer shall provide the means for taking the measurement with the vehicle running in pure electric operating state.

 

4.1.2.2.2.

The procedure shall start with the discharge of the electrical energy/power storage device of the vehicle while driving (on the test track, on a chassis dynamometer, etc.) in any of the following conditions:

 

at a steady speed of 50 km/h until the fuel-consuming engine of the HEV starts up;

 

if a vehicle cannot reach a steady speed of 50 km/h without the fuel-consuming engine starting up, the speed shall be reduced until it can run at a lower steady speed at which the fuel-consuming engine does not start up for a defined time or distance (to be determined by the technical service and the manufacturer to the satisfaction of the approval authority);

 

in accordance with the manufacturer’s recommendation.

The fuel-consuming engine shall be stopped within ten seconds of being automatically started.

4.1.2.3.   For externally chargeable hybrid electric vehicles (OVC HEV) with an operating mode switch as defined in Appendix 3:

 

4.1.2.3.1.

If the mode switch does not have a pure electric position, the manufacturer shall provide the means for taking the measurement with the vehicle running in pure electric operating state.

 

4.1.2.3.2.

The procedure shall start with the discharge of the electrical energy/power storage device of the vehicle while driving with the switch in pure electric position (on the test track, on a chassis dynamometer, etc.) at a steady speed of 70 percent ± 5 percent of the maximum design vehicle speed of the vehicle in pure electric mode, which is to be determined according to the test procedure in Appendix 1 to Annex X.

 

4.1.2.3.3.

Discharging shall stop in any of the following conditions:

 

when the vehicle is unable to run at 65 percent of the maximum thirty minutes speed;

 

when the standard on-board instrumentation indicates that the vehicle should be stopped;

 

after 100 km.

By means of derogation if the manufacturer can prove to the technical service to the satisfaction of the approval authority that the vehicle is physically not capable of achieving the thirty minutes speed the maximum fifteen minute speed may be used instead.

 

4.1.2.3.4.

If the vehicle is not equipped with a pure electric operating state, the electrical energy/power storage device shall be discharged by driving the vehicle (on the test track, on a chassis dynamometer, etc.):

 

at a steady speed of 50 km/h until the fuel-consuming engine of the HEV starts up; or

 

if a vehicle cannot reach a steady speed of 50 km/h without the fuel-consuming engine starting up, the speed shall be reduced until it can run at a lower steady speed at which the fuel-consuming engine does not start up for a defined time or distance (to be determined by the technical service and the manufacturer to the satisfaction of the approval authority); or

 

in accordance with the manufacturer’s recommendation.

The fuel-consuming engine shall be stopped within ten seconds of being automatically started.

4.1.3.   Normal overnight charge

For a pure electric vehicle, the battery shall be charged according to the normal overnight charge procedure, as defined in point 2.4.1.2. of Appendix 2, for a period not exceeding twelve hours.

For an OVC HEV, the battery shall be charged according to the normal overnight charge procedure as described in point 3.2.2.4. of Appendix 3.

4.2.   Application of the cycle and measurement of the range

4.2.1.   For pure electric vehicles:

4.2.1.1.   The test sequence set out in the Appendices shall be carried out on a chassis dynamometer adjusted as described in Annex II, until the test criteria are met.

4.2.1.2.   The test criteria shall be deemed as having been met when the vehicle is unable to meet the target curve up to 50 km/h, or when the standard on-board instrumentation indicates that the vehicle should be stopped.

The vehicle shall then be slowed to 5 km/h without braking by releasing the accelerator pedal, and then stopped by braking.

4.2.1.3.   At speeds of over 50 km/h, when the vehicle does not reach the acceleration or speed required for the test cycle, the accelerator pedal shall remain fully depressed, or the accelerator handle shall be turned fully, until the reference curve has been reached again.

4.2.1.4.   Up to three interruptions, of no more than 15 minutes in total, are permitted between test sequences.

4.2.1.5.   The distance covered in km (De) is the electric range of the electric vehicle. It shall be rounded to the nearest whole number.

4.2.2.   For hybrid electric vehicles:

 

4.2.2.1.1.

The applicable type I test cycle and accompanying gearshift arrangements, as set out in point 4.5.5. of Annex II shall be carried out on a chassis dynamometer adjusted as described in Annex II, until the test criteria are met.

 

4.2.2.1.2.

To measure the electric range, the test criteria shall be deemed as having been met when the vehicle is unable to meet the target curve up to 50 km/h, or when the standard on-board instrumentation indicates that the vehicle should be stopped, or when the battery has reached its minimum state of charge. The vehicle shall then be slowed to 5 km/h without braking by releasing the accelerator pedal, and then stopped by braking.

 

4.2.2.1.3.

At speeds of over 50 km/h, when the vehicle does not reach the acceleration or speed required for the test cycle, the accelerator pedal shall remain fully depressed until the reference curve has been reached again.

 

4.2.2.1.4.

Up to three interruptions, of no more than 15 minutes in total, are permitted between test sequences.

 

4.2.2.1.5.

The distance covered in km using the electrical motor only (De) is the electric range of the hybrid electric vehicle. It shall be rounded to the nearest whole number. Where the vehicle operates both in electric and in hybrid mode during the test, the periods of electric-only operation will be determined by measuring current to the injectors or ignition.

4.2.2.2.   Determining the OVC range of a hybrid electric vehicle

 

4.2.2.2.1.

The applicable type I test cycle and accompanying gearshift arrangements, as set out in point 4.4.5. of Annex II, shall be carried out on a chassis dynamometer adjusted as described in Annex II, until the test criteria are met.

 

4.2.2.2.2.

To measure the OVC range DOVC, the test criteria shall be deemed as having been met when the battery has reached its minimum state of charge according to the criteria in points 3.2.3.2.2.2. or 4.2.4.2.2.2. of Appendix 3. Driving shall be continued until the final idling period in the type I test cycle has been completed.

 

4.2.2.2.3.

Up to three interruptions, of no more than fifteen minutes in total, are permitted between test sequences.

 

4.2.2.2.4.

The total distance driven in km, rounded to the nearest whole number, shall be the OVC range of the hybrid electric vehicle.

4.2.2.3.   At speeds of over 50 km/h, when the vehicle does not reach the acceleration or speed required for the test cycle, the accelerator pedal shall remain fully depressed, or the accelerator handle shall be turned fully, until the reference curve has been reached again.

4.2.2.4.   Up to three interruptions, of no more than 15 minutes in total, are permitted between test sequences.

4.2.2.5.   The distance covered in km (DOVC) is the electric range of the hybrid electric vehicle. It shall be rounded to the nearest whole number.

ANNEX VIII

Test type VIII requirements: OBD environmental tests

  • 1. 
    Introduction
 

1.1.

This Annex describes the procedure for type VIII testing on environmental on-board diagnostics (OBD). The procedure describes methods for checking the function of the OBD system on the vehicle by simulating failure of emission-relevant components in the powertrain management system and emission-control system.

 

1.2.

The manufacturer shall make available the defective components or electrical devices to be used to simulate failures. When measured over the appropriate test type I cycle, such defective components or devices shall not cause the vehicle emissions to exceed by more than 20 percent the OBD thresholds set out in Annex VI(B) to Regulation (EU) No 168/2013.

 

1.3.

When the vehicle is tested with the defective component or device fitted, the OBD system shall be approved if the malfunction indicator is activated. The system shall also be approved if the indicator is activated below the OBD thresholds.

  • 2. 
    OBD stage I and stage II

2.1.   OBD stage I

The test procedures in this Annex shall be mandatory for L-category vehicles equipped with an OBD stage I system as referred to in Article 19 of and Annex IV to Regulation (EU) No 168/2013. This obligation concerns compliance with all provisions of this Annex except those relating to OBD stage II requirements referred to in point 2.2.

2.2.   OBD stage II

 

2.2.1.

An L-category vehicle may be equipped with an OBD stage II system at the choice of the manufacturer.

 

2.2.2.

In such cases, the test procedures of this Annex may be used by the manufacturer to demonstrate voluntary compliance with OBD II requirements. This concerns in particular the applicable points listed in Table 7-1

Table 7-1

OBD stage II functions and associated requirements in points of this Annex and its Appendix 1

 

Topic

Points

Catalytic converter monitoring

8.3.1.1., 8.3.2.1.

EGR system monitoring

8.3.3.

Misfire detection

8.3.1.2.

NOx after-treatment system monitoring

8.4.3.

Oxygen sensor deterioration

8.3.1.3.

Particulate filter

8.3.2.2.

Particulate matter (PM) monitoring

8.4.4.

  • 3. 
    Description of tests

3.1.   Test vehicle

 

3.1.1.

The environmental OBD verification and demonstration tests shall be carried out on a test vehicle, that shall be properly maintained and used, dependent on the chosen durability test method set-out in Article 23(3) of Regulation (EU) No 168/2013 using the test procedures set-out in this Annex and in Annex II:

 

3.1.2.

In case of applying the durability test procedure set out in Article 23(3a) or 23(3b) of Regulation (EU) No 168/2013 the test vehicles shall be equipped with the aged emission components used for durability tests as well as for the purposes of this Annex and the OBD environmental tests are to be finally verified and reported at the conclusion of the Type V durability testing;

 

3.1.3.

In case the OBD demonstration test requires emission measurements, the type VIII test shall be carried out on the test vehicles used for the type V durability test in Annex V. Type VIII tests shall be finally verified and reported at the conclusion of the type V durability testing.

 

3.1.4.

In case of applying the durability test procedure set out in Article 23(3c) of Regulation (EU) No 168/2013, the applicable deterioration factors set out in part B of Annex VII to that Regulation shall be multiplied with the emission test results.

3.2.   The OBD system shall indicate the failure of an emission-related component or system when that failure results in emissions exceeding the OBD threshold in Part B of Annex VI to Regulation (EU) No 168/2013 or any powertrain fault that triggers an operation mode that significantly reduces torque in comparison with normal operation.

3.3.   The test type I data in the test report referred to in Article 32(1) of Regulation (EU) No 168/2013, including the used dynamometer settings and applicable emission laboratory test cycle, shall be provided for reference.

3.4.   The list with PCU/ECU malfunctions shall be provided pursuant to the requirements referred to in Number C11 of Annex II of Regulation (EU) No 168/2013 as follows:

 

3.4.1.

for each malfunction that leads to the OBD emission thresholds set out in Part B of Annex VI to Regulation (EU) No 168/2013 in both non-defaulted and defaulted driving mode being exceeded. The emission laboratory test results shall be reported in those additional columns in the format of the information document referred to in Article 27(4) of Regulation (EU) No 168/2013;

 

3.4.2.

for short descriptions of the methods used to simulate the emission-relevant malfunctions, as referred to in points 1.1., 8.3.1.1. and 8.3.1.3.

  • 4. 
    OBD environmental test procedure
 

4.1.

The testing of OBD systems consists of the following phases:

 

4.1.1.

Simulation of malfunction of a component of the powertrain management or emission-control system;

 

4.1.2.

Preconditioning of the vehicle (in addition to the preconditioning specified in point 5.2.4. of Annex II) with a simulated malfunction that will lead to the OBD thresholds in Part B of Annex VI to Regulation (EU) No 168/2013 being exceeded;

 

4.1.3.

Driving the vehicle with a simulated malfunction over the applicable type I test cycle and measuring the emissions of the vehicle, as follows:

 

4.1.3.1.

For OVC vehicles, the pollutant emissions shall be measured under the same conditions as specified for Condition B of the type I test (points 3.3. and 4.3.).

 

4.1.3.2.

For NOVC vehicles, the pollutant emissions shall be measured under the same conditions as in the type I test;

 

4.1.4.

Determining whether the OBD system reacts to the simulated malfunction and alerts the vehicle driver to it in an appropriate manner.

 

4.2.

Alternatively, at the request of the manufacturer, malfunction of one or more components may be electronically simulated in accordance with the requirements laid down in point 8.

 

4.3.

Manufacturers may request that monitoring take place outside the type I test cycle if it can be demonstrated to the approval authority that the monitoring conditions of the type I test cycle would be restrictive when the vehicle is used in service.

 

4.4.

For all demonstration testing, the Malfunction Indicator (MI) shall be activated before the end of the test cycle.

  • 5. 
    Test vehicle and fuel

5.1.   Test vehicle

The test vehicles shall meet the requirements of point 2 of Annex VI.

5.2.   The manufacturer shall set the system or component for which detection is to be demonstrated at or beyond the criteria limit prior to operating the vehicle over the emissions test cycle appropriate for the classification of the L-category vehicle. To determine correct functionality of the diagnostic system, the L-category vehicle shall then be operated over the appropriate type I test cycle according to its classification set out in point 4.3. of Annex II.

5.3.   Test fuel

The appropriate reference fuel as described in Appendix 2 to Annex II shall be used for testing. For mono-fuelled and bi-fuelled gas vehicles, the fuel type for each failure mode to be tested may be selected by the approval authority from the reference fuels described in Appendix 2 to Annex II. The selected fuel type shall not be changed during any of the test phases. Where LPG or NG/biomethane for alternative fuel vehicles are used as a fuel, the engine may be started on petrol and switched to LPG or NG/biomethane (automatically and not by the driver) after a pre-determined period of time.

  • 6. 
    Test temperature and pressure
 

6.1.

The test temperature and ambient pressure shall meet the requirements of the type I test as set out in Annex II.

  • 7. 
    Test equipment

7.1.   Chassis dynamometer

The chassis dynamometer shall meet the requirements of Annex II.

  • 8. 
    OBD environmental verification test procedures

8.1.   The operating test cycle on the chassis dynamometer shall meet the requirements of Annex II.

8.2.   Vehicle preconditioning

 

8.2.1.

According to the propulsion type and after introduction of one of the failure modes referred to in point 8.3., the vehicle shall be preconditioned by driving at least two consecutive appropriate type I tests. For vehicles equipped with a compression-ignition engine, additional preconditioning of two appropriate type I test cycles is permitted.

 

8.2.2.

At the request of the manufacturer, alternative preconditioning methods may be used.

8.3.   Failure modes to be tested

 

8.3.1.

For positive-ignition propelled vehicles:

 

8.3.1.1.

Replacement of the catalytic converter type with a deteriorated or defective catalytic converter or electronic simulation of such a failure;

 

8.3.1.2.

Engine misfire conditions in line with those for misfire monitoring referred to in Annex II (C11) to Regulation (EU) No 168/2013;

 

8.3.1.3.

Replacement of the oxygen sensor with a deteriorated or defective sensor or electronic simulation of such a failure;

 

8.3.1.4.

Electrical disconnection of any other emission-related component connected to a powertrain control unit / engine control unit (if active on the selected fuel type);

 

8.3.1.5.

Electrical disconnection of the electronic evaporative purge control device (if equipped and if active on the selected fuel type). For this specific failure mode, the type I test need not be performed.

 

8.3.2.

For vehicles equipped with a compression-ignition engine:

 

8.3.2.1.

Replacement of the catalytic converter type, where fitted, with a deteriorated or defective catalytic converter or electronic simulation of such a failure;

 

8.3.2.2.

Total removal of the particulate filter, where fitted, or, where sensors are an integral part of the filter, a defective filter assembly;

 

8.3.2.3.

Electrical disconnection of any electronic fuel quantity and timing actuator in the fuelling system;

 

8.3.2.4.

Electrical disconnection of any other emission-related or functional safety-relevant component connected to any control unit of the powertrain, the propulsion units or the drive train;

 

8.3.2.5.

In meeting the requirements of points 8.3.2.3. and 8.3.2.4. and with the agreement of the approval authority, the manufacturer shall take appropriate steps to demonstrate that the OBD system will indicate a fault when disconnection occurs.

 

8.3.3.

The manufacturer shall demonstrate that malfunctions of the EGR flow and cooler, where fitted, are detected by the OBD system during its approval test.

 

8.3.4.

Any powertrain malfunction that triggers any operating mode which significantly reduces engine torque (i.e. by 10 % or more in normal operation) shall be detected and reported by the powertrain / engine control system.

8.4.   OBD system environmental verification tests

 

8.4.1.

Vehicles fitted with positive-ignition engines:

 

8.4.1.1.

After vehicle preconditioning in accordance with point 8.2., the test vehicle is driven over the appropriate type I test.

The malfunction indicator shall activate before the end of this test under any of the conditions given in points 8.4.1.2. to 8.4.1.6. The approval authority may substitute those conditions with others in accordance with point 8.4.1.6. However, the total number of failures simulated shall not exceed four for the purpose of type-approval.

For bi-fuelled gas vehicles, both fuel types shall be used within the maximum of four simulated failures at the discretion of the approval authority.

 

8.4.1.2.

Replacement of a catalytic converter type with a deteriorated or defective catalytic converter or electronic simulation of a deteriorated or defective catalytic converter that results in emissions exceeding the THC OBD threshold, or if applicable the NMHC OBD threshold, in Part B of Annex VI to Regulation (EU) No 168/2013;

 

8.4.1.3.

An induced misfire condition in line with those for misfire monitoring referred to in Annex II (C11) of Regulation (EU) No 168/2013 that results in emissions exceeding any of the OBD thresholds given in Part B of Annex VI to Regulation (EU) No 168/2013;

 

8.4.1.4.

Replacement of an oxygen sensor with a deteriorated or defective oxygen sensor or electronic simulation of a deteriorated or defective oxygen sensor that results in emissions exceeding any of OBD thresholds in Part B of Annex VI to Regulation (EU) No 168/2013;

 

8.4.1.5.

Electrical disconnection of the electronic evaporative purge control device (if equipped and if active on the selected fuel type);

 

8.4.1.6.

Electrical disconnection of any other emission-related powertrain component connected to a powertrain control unit / engine control unit / drive train control unit that results in emissions exceeding any of the OBD thresholds in Part B of Annex VI to Regulation (EU) No 168/2013 or triggers an operation mode with significantly reduced torque as compared with normal operation.

 

8.4.2.

Vehicles fitted with compression-ignition engines.

 

8.4.2.1.

After vehicle preconditioning in accordance with point 8.2., the test vehicle is driven in the applicable type I test.

The malfunction indicator shall activate before the end of this test under any of the conditions in points 8.4.2.2. to 8.4.2.5. The approval authority may substitute those conditions by others in accordance with point 8.4.2.5. However, the total number of failures simulated shall not exceed four for the purposes of type-approval;

 

8.4.2.2.

Replacement of a catalytic converter type, where fitted, with a deteriorated or defective catalytic converter or electronic simulation of a deteriorated or defective catalytic converter that results in emissions exceeding any of the OBD thresholds in Part B of Annex VI to Regulation (EU) No 168/2013;

 

8.4.2.3.

Total removal of the particulate filter, where fitted, or replacement of the particulate filter with a defective particulate filter meeting the conditions laid down in point 8.4.2.2. that results in emissions exceeding any of the OBD thresholds in Part B of Annex VI to Regulation (EU) No 168/2013.

 

8.4.2.4.

With reference to point 8.3.2.5., disconnection of any electronic fuel quantity and timing actuator in the fuelling system that results in emissions exceeding any of the OBD thresholds in Part B of Annex VI to Regulation (EU) No 168/2013;

 

8.4.2.5.

With reference to point 8.3.2.5., disconnection of any other powertrain component connected to a powertrain control unit / engine control / drive train control unit that results in emissions exceeding any of the OBD thresholds in Part B of Annex VI to Regulation (EU) No 168/2013 or that triggers an operation mode with a significantly reduced torque as compared with normal operation.

 

8.4.3.

Replacement of the NOx after-treatment system, where fitted, with a deteriorated or defective system or electronic simulation of such a failure.

 

8.4.4.

Replacement of the particulate matter monitoring system, where fitted, with a deteriorated or defective system or electronic simulation of such a failure.

ANNEX IX

Test type IX requirements: sound level

 

Appendix Number

Appendix title

Page

1

Sound level test requirements for powered cycles and two-wheel mopeds (category L1e)

247

2

Sound level test requirements for motorcycles (categories L3e and L4e)

258

3

Sound level test requirements for three-wheel mopeds, tricycles and quadricycles (categories L2e, L5e, L6e and L7e)

272

4

Test track specification

283

  • 1. 
    Introduction

This Annex describes the procedure for type IX testing, as referred to in Part A of Annex V to Regulation (EU) No 168/2013. It lays down specific provisions regarding permissible sound level test procedures for L-category vehicles.

  • 2. 
    Test procedure, measurements and results
 

2.1.

Durability requirements of the noise abatement system shall be regarded as fulfilled if the vehicle complies with the requirements regarding conditioning of the test vehicle set-out in this Annex. In addition for vehicles equipped with silencers containing absorbent fibrous materials the relevant test procedure set-out in this Annex shall be conducted to demonstrate durability of the noise abatement system.

 

2.2.

When the EU has acceded to:

 
 

UNECE regulation No 9: Uniform provisions concerning the approval of three-wheel vehicles or quadricycles with regard to noise;

 
 

UNECE regulation No 41 (1): Uniform provisions concerning the approval of motorcycles with regard to noise;

 
 

UNECE regulation No 63: Uniform provisions concerning the approval of mopeds with regard to noise;

 
 

UNECE regulation No 92: Uniform provisions concerning the approval of non-original replacement exhaust silencing systems (RESS) for motorcycles, mopeds and three-wheel vehicles;

the corresponding provisions of this Annex will become obsolete and vehicles of the applicable sub-category as listed in Table 8-1 shall comply with the requirements of the corresponding UNECE Regulation, including as regards sound limits:

Table 8-1

L-category vehicle sub-categories and the applicable UNECE regulations regarding sound requirements

 

Vehicle (sub-)category

Vehicle category name

Applicable test procedure

L1e-A

Powered cycle

UNECE regulation No 63

L1e-B

Two-wheel moped

vmax ≤ 25 km/h

Two-wheel moped

vmax ≤ 45 km/h

L2e

Three-wheel moped

UNECE regulation No 9

L3e

Two-wheel motorcycle

Engine capacity ≤ 80 cm3

UNECE regulation No 41

Two-wheel motorcycle

80 cm3 <

Engine capacity ≤

175 cm3

Two-wheel motorcycle

Engine capacity

> 175 cm3

L4e

Two-wheel motorcycle with side-car

L5e-A

Tricycle

UNECE regulation No 9

L5e-B

Commercial tricycle

L6e-A

Light quad

UNECE regulation No 63

L6e-B

Light mini-car

UNECE regulation No 9

L7e-A

On-road quad

L7e-B

All-terrain vehicles

L7e-C

Heavy mini-car

  • 3. 
    Test vehicle
 

3.1.

The test vehicles used for type VIII sound tests and in particular the noise abatement system and components shall be representative of the vehicle type with regard to the environmental performance produced in series and placed on the market. The test vehicle shall be properly maintained and used.

 

3.2.

For vehicles propelled with compressed air, the sound shall be measured at highest nominal storage pressure of the compressed air + 0 / – 15 %.

 

Appendix 1

Sound level test requirements for powered cycles and two-wheel mopeds (category L1e)

 

1.

Definitions

For the purposes of this Appendix:

 

1.1.

‘type of powered cycle or two-wheel moped as regards its sound level and exhaust system’ means L1e vehicles which do not differ in such essential respects as the following:

 

1.1.1.

type of engine (two- or four-stroke, reciprocating piston engine or rotary-piston engine, number and capacity of cylinders, number and type of carburettors or injection systems, arrangement of valves, maximum net power and corresponding speed). The cubic capacity of rotary-piston engines shall deemed to be double the volume of the chamber;

 

1.1.2.

Drive train, in particular the number and ratios of the gears of the transmission and the final ratio;

 

1.1.3.

number, type and arrangement of exhaust systems;

 

1.2.

‘exhaust system’ or ‘silencer’ means a complete set of components necessary to limit the noise caused by a moped engine and its exhaust;

 

1.2.1.

‘original exhaust system or silencer’ means a system of the type fitted to the vehicle at the time of the environmental performance type-approval or extension of type-approval. It may be that first fitted or a replacement;

 

1.2.2.

‘non-original exhaust system or silencer’ means a system of a type other than that fitted to the vehicle at the time of the environmental performance type-approval or extension of type-approval. It may be used only as a replacement exhaust system or silencer;

 

1.3.

‘exhaust systems of differing types’ means systems which are fundamentally different in one of the following ways:

 

1.3.1.

systems comprising components bearing different factory markings or trademarks;

 

1.3.2.

systems comprising any component made of materials of different characteristics or comprising components which are of a different shape or size;

 

1.3.3.

systems in which the operating principles of at least one component are different;

 

1.3.4.

systems comprising components in different combinations;

 

1.4.

‘component of an exhaust system’ means one of the individual components which together form the exhaust system (such as exhaust pipe work, the silencer proper) and the air intake system (air filter), if any.

If the engine has to be equipped with an air intake system (air filter or intake noise absorber) in order to comply with the maximum permissible sound levels, the filter or the absorber shall be treated as components having the same importance as the exhaust system.

  • 2. 
    Component type-approval in respect of the sound level and original exhaust system, as a separate technical unit, of a type of two-wheel moped

2.1.   Noise made by the two-wheel moped in motion (measuring conditions and method for testing of the vehicle during component type-approval)

2.1.1.   Noise limits: see Part D of Annex VI to Regulation (EU) No 168/2013.

2.1.2.   Measuring instruments

2.1.2.1.   Acoustic measurements

The apparatus used for measuring the sound-level shall be a precision sound-level meter of the type described in International Electro-technical Commission (IEC) publication 179 Precision sound-level meters, second edition. Measurements shall be taken using the ‘fast’ response and the ‘A’ weighting also described in that publication.

At the beginning and end of each series of measurements, the sound-level meter shall be calibrated in accordance with the manufacturer’s instructions, using an appropriate noise source (e.g. piston phone).

2.1.2.2.   Speed measurements

Engine speed and moped speed on the test track shall be determined to within ± 3 %.

2.1.3.   Conditions of measurement

2.1.3.1.   Condition of the moped

The combined weight of the rider and the test equipment used on the moped shall be between 70 kg and 90 kg. If necessary, weights shall be added to the moped to bring the combined weight up to at least 70 kg.

During the measurements, the moped shall be in running order (including coolant, oils, fuel, tools, spare wheel and rider).

Before the measurements are taken, the moped shall be brought to the normal operating temperature.

If the moped is fitted with fans with an automatic actuating mechanism, this system shall not be interfered with during the sound measurements. For mopeds with more than one driven wheel, only the drive provided for normal road operation may be used. Where a moped is fitted with a sidecar, this shall be removed for the purposes of the test.

2.1.3.2.   Test site

The test site shall consist of a central acceleration section surrounded by a substantially flat test area. The acceleration section shall be flat; its surface shall be dry and such that surface noise remains low.

On the test site, the variations in the free sound field between the sound source at the centre of the acceleration section and the microphone shall not exceed 1 dB. This condition will be deemed to be met if there are no large objects which reflect sound, such as fences, rocks, bridges or buildings, within 50 m of the centre of the acceleration section. The surface covering of the test track shall conform to the requirements of Appendix 7.

The microphone shall not be obstructed in any way which could affect the sound field, and no person may stand between the microphone and the sound source. The observer taking the measurements shall so position himself as not to affect the readings of the measuring instrument.

2.1.3.3.   Miscellaneous

Measurements shall not be taken in poor atmospheric conditions. It shall be ensured that the results are not affected by gusts of wind.

For measurements, the A-weighted sound level of sound sources other than those of the vehicle to be tested and of wind effects shall be at least 10 dB(A) below the sound level produced by the vehicle. A suitable windscreen may be fitted to the microphone provided that account is taken of its effect on the microphone’s sensitivity and directional characteristics.

If the difference between the ambient noise and the noise to be measured is between 10 and 16 dB(A), the test results shall be calculated by subtracting the appropriate correction from the readings on the sound-level meter, as in the following graph:

Figure Ap1-1

Difference between ambient noise and noise to be measured

Image

2.1.4.   Method of measurement

2.1.4.1.   Nature and number of measurements

The maximum sound level expressed in A-weighted decibels (dB(A)) shall be measured as the moped travels between lines AA′ and BB′ (Figure Ap1-2). The measurement will be invalid if an abnormal discrepancy is recorded between the peak value and the general noise level. At least two measurements shall be taken on each side of the moped.

2.1.4.2.   Positioning of the microphone

The microphone shall be positioned 7,5 m ± 0,2 m from the reference line CC′ (Figure Ap1-2) of the track and 1,2 m ± 0,1 m above ground level.

2.1.4.3.   Conditions of operation

The moped shall approach line AA′ at an initial steady speed as specified in point 2.1.4.3.1 and 2.1.4.3.2. When the front of the moped reaches line AA′, the throttle shall be fully opened as quickly as practically possible and kept in that position until the rear of the moped reaches line BB′; the throttle shall then be returned as quickly as possible to the idle position.

For all measurements, the moped shall be ridden in a straight line over the acceleration section, keeping the median longitudinal plane of the moped as close as possible to line CC′.

2.1.4.3.1.   Approach speed

The moped shall approach line AA′ at a steady speed of 30 km/h or at its top speed if this is less.

2.1.4.3.2.   Selection of gear ratio

If the moped is fitted with a manual-shift gearbox, the highest gear which allows it to cross line AA′ at a speed at least half the full-power engine speed shall be selected.

If the moped has an automatic transmission, it shall be ridden at the speeds indicated in 2.1.4.3.1.

2.1.5.   Results (test report)

2.1.5.1.   The test report according to the template referred to Article 32(1) to Regulation (EU) No 168/2013 drawn up for the purpose of issuing the document shall indicate any circumstances and factors affecting the measurements.

2.1.5.2.   The measurements shall be rounded to the nearest decibel.

If the figure following the decimal point is between 0 and 4, the total is rounded down and if between 5 and 9, it is rounded up.

Only measurements which vary by 2,0 dB(A) or less in two consecutive tests on the same side of the moped shall be used.

2.1.5.3.   To take account of inaccuracies, 1,0 dB(A) shall be deducted from each value obtained in accordance with point 2.1.5.2.

2.1.5.4.   If the average of the four measurements does not exceed the maximum permissible level for the category of moped in question, the limits laid down in point 2.1.1 will be deemed as being complied with.

This average value shall be taken as the result of the test.

Figure Ap1-2

Test for vehicle in motion

Image

Figure Ap1-3

Test for stationary vehicle

Image

2.2.   Noise from stationary moped (measuring conditions and method for testing of the vehicle in use)

2.2.1.   Sound-pressure level in the immediate vicinity of the moped

In order to facilitate subsequent noise tests on mopeds in use, the sound-pressure level in the immediate vicinity of the exhaust-system outlet (silencer) shall be measured in accordance with the following requirements, the result being entered in the test report drawn up for the purpose of issuing the document according to the template referred to in Article 32(1) of Regulation (EU) No 168/2013.

2.2.2.   Measuring instruments

A precision sound-level meter as defined in point 2.1.2.1 shall be used.

2.2.3.   Conditions of measurement

2.2.3.1.   Condition of the moped

Before the measurements are taken, the moped engine shall be brought to normal operating temperature. If the moped is fitted with fans with an automatic actuating mechanism, this system shall not be interfered with during the noise measurements.

During the measurements, the gearbox shall be in neutral gear. If it is impossible to disconnect the drive train, the driving wheel of the moped shall be allowed to rotate freely, e.g. by placing the vehicle on its centre stand.

2.2.3.2.   Test site (Figure Ap1-2)

Any area in which there are no significant acoustic disturbances may be used as a test site. Flat surfaces which are covered with concrete, asphalt or some other hard material and are highly reflective are suitable; surfaces consisting of earth which has been tamped down shall not be used. The test site shall be in the form of a rectangle the sides of which are at least 3 m from the outer edge of the moped (handlebars excluded). There shall be no significant obstacles, e.g. no persons other than the rider and the observer may stand within this rectangle.

The moped shall be positioned within the rectangle so that the microphone used for measurement is at least 1 m from any kerb.

2.2.3.3.   Miscellaneous

Instrument readings caused by ambient noise and wind effects shall be at least 10,0 dB(A) lower than the noise levels to be measured. A suitable windshield may be fitted to the microphone provided that account is taken of its effect on the microphone’s sensitivity.

2.2.4.   Method of measurement

2.2.4.1.   Nature and number of measurements

The maximum noise level expressed in A-weighted decibels (dB(A)) shall be measured during the period of operation laid down in point 2.2.4.3.

At least three measurements shall be taken at each measuring point.

2.2.4.2.   Positioning of the microphone (Figure Ap1-3)

The microphone shall be positioned level with the exhaust outlet or 0,2 m above the surface of the track, whichever is higher. The microphone diaphragm shall face towards the exhaust outlet at a distance of 0,5 m from it. The axis of maximum sensitivity of the microphone shall be parallel to the surface of the track at an angle of 45° ± 10° to the vertical plane of the direction of the exhaust emissions.

In relation to this vertical plane, the microphone shall be positioned on the side on which there is the maximum possible distance between the microphone and the outline of the moped (handlebars excluded).

If the exhaust system has more than one outlet at centres less than 0,3 m apart, the microphone shall face the outlet which is nearest the moped (handlebars excluded) or the outlet which is highest above the surface of the track. If the centres of the outlets are more than 0,3 m apart, separate measurements shall be taken for each of them; the highest figure recorded being taken as the test value.

2.2.4.3.   Operating conditions

The engine speed shall be held steady at:

 
 

((S)/(2)) if S is more than 5 000 rpm; or

 
 

((3S)/(4)) if S is 5 000 rpm or less,

where ‘S’ is the engine speed at which maximum power is developed.

When a constant engine speed is reached, the throttle shall be returned swiftly to the idle position. The noise level shall be measured during an operating cycle consisting of a brief period of constant engine speed and throughout the deceleration period, the highest sound-level meter reading being taken as the test value.

2.2.5.   Results (test report)

2.2.5.1.   The test report drawn up for the purpose of issuing the document according to the template referred to in Article 32(1) of Regulation (EU) No 168/2013 shall indicate all relevant data and particularly those used in measuring the noise of the stationary moped.

2.2.5.2.   Values shall be read off the measuring instrument and rounded to the nearest decibel.

Only measurements which vary by 2,0 dB(A) or less in three consecutive tests will be used.

2.2.5.3.   The highest of the three measurements shall be taken as the test result.

2.3.   Original exhaust system (silencer)

2.3.1.   Requirements for silencers containing absorbent fibrous materials

2.3.1.1.   Absorbent fibrous material shall be asbestos-free and may be used in the construction of silencers only if it is held securely in place throughout the service life of the silencer and meets the requirements of point 2.3.1.2, 2.3.1.3 or 2.3.1.4.

2.3.1.2.   After removal of the fibrous material, the noise level shall comply with the requirements of point 2.1.1.

2.3.1.3.   The absorbent fibrous material may not be placed in those parts of the silencer through which the exhaust gases pass and shall comply with the following requirements:

2.3.1.3.1.   The material shall be heated at a temperature of 923,2 ± 5 K (650 ± 5 °C) for four hours in a furnace without reduction in the average length, diameter or bulk density of the fibre;

2.3.1.3.2.   After being heated at 923,2 ± 5 K (650 ± 5 °C) for one hour in a furnace, at least 98 % of the material shall be retained in a sieve of nominal mesh size 250 μm complying with technical standard ISO 3310-1:2000 when tested in accordance with ISO standard 2559:2011;

2.3.1.3.3.   The material shall lose no more than 10 % of its weight after being soaked for 24 hours at 362,2 ± 5 K (90 ± 5 °C) in a synthetic condensate of the following composition:

 

1 N hydrobromic acid (HBr): 10 ml

 

1 N sulphuric acid (H2SO4): 10 ml

 

Distilled water to make up to 1 000 ml.

Note: The material shall be washed in distilled water and dried for one hour at 378,2 K (105 °C) before weighing.

2.3.1.4.   Before the system is tested in accordance with point 2.1, it shall be put into normal working order by one of the following methods:

2.3.1.4.1.   Conditioning by continuous road operation

 

2.3.1.4.1.1.

The minimum distance to be travelled during conditioning shall be 2 000 km.

 

2.3.1.4.1.2.

50 ± 10 % of this conditioning cycle shall consist of town driving and the remainder of long-distance runs; the continuous road cycle may be replaced by a corresponding test-track programme.

 

2.3.1.4.1.3.

The two types of driving shall be alternated at least six times.

 

2.3.1.4.1.4.

The complete test programme shall include at least 10 breaks lasting at least three hours in order to reproduce the effects of cooling and condensation.

2.3.1.4.2.   Conditioning by pulsation

 

2.3.1.4.2.1.

The exhaust system or components thereof shall be fitted to the moped or to the engine.

In the first case, the moped shall be mounted on a roller dynamometer. In the second case, the engine shall be mounted on a test bench. The test apparatus, as shown in detail in Figure Ap1-4, is fitted at the outlet of the exhaust system. Any other apparatus giving equivalent results is acceptable.

 

2.3.1.4.2.2.

The test equipment shall be adjusted so that the flow of exhaust gases is alternately interrupted and restored 2 500 times by a rapid-action valve.

 

2.3.1.4.2.3.

The valve shall open when the exhaust gas back-pressure, measured at least 100 mm downstream of the intake flange, reaches a value of between 0,35 and 0,40 bar. Should the engine characteristics prevent this, the valve shall open when the gas back-pressure reaches a level equivalent to 90 % of that which can be measured before the engine stops. It shall close when this pressure differs by no more than 10 % from its stabilised value with the valve open.

 

2.3.1.4.2.4.

The time-lapse relay shall be set for the period in which exhaust gases are produced, calculated on the basis of the requirements of point 2.3.1.4.2.3.

 

2.3.1.4.2.5.

Engine speed shall be 75 % of the speed (S) at which the engine develops maximum power.

 

2.3.1.4.2.6.

The power indicated by the dynamometer shall be 50 % of the full-throttle power measured at 75 % of engine speed (S).

 

2.3.1.4.2.7.

Any drainage holes shall be closed off during the test.

 

2.3.1.4.2.8.

The entire test shall be completed within 48 hours. If necessary, a cooling period shall be allowed after each hour.

2.3.1.4.3.   Conditioning on a test bench

 

2.3.1.4.3.1.

The exhaust system shall be fitted to an engine representative of the type fitted to the moped for which the system is designed, and mounted on a test bench.

 

2.3.1.4.3.2.

Conditioning consists of three test-bench cycles.

 

2.3.1.4.3.3.

Each test-bench cycle shall be followed by a break of at least six hours in order to reproduce the effects of cooling and condensation.

 

2.3.1.4.3.4.

Each test-bench cycle consists of six phases. The engine conditions and duration are as follows for each phase:

Table Ap1-1

Test-bench test cycle phases

 

Phase

Conditions

Duration of phase

(minutes)

1

Idling

6

2

25 % load at 75 % S

40

3

50 % load at 75 % S

40

4

100 % load at 75 % S

30

5

50 % load at 100 % S

12

6

25 % load at 100 % S

22

Total time:

2 hrs. 30 mins

 

2.3.1.4.3.5.

During this conditioning procedure, at the request of the manufacturer, the engine and the silencer may be cooled so that the temperature recorded at a point not more than 100 mm from the exhaust gas outlet does not exceed that measured when the moped is running at 75 % S in top gear. The engine and moped speeds shall be determined with an accuracy of ± 3 %.

Figure Ap1-4

Test apparatus for conditioning by pulsation

Image

 

1.

Inlet flange or sleeve for connection to the rear of the test exhaust system.

 

2.

Hand-operated regulating valve.

 

3.

Compensating reservoir with a maximum capacity of 40 l and a filling time of not less than one second.

 

4.

Pressure switch with an operating range of 0,05 to 2,5 bar.

 

5.

Time delay switch.

 

6.

Pulse counter.

 

7.

Quick-acting valve, such as exhaust brake valve 60 mm in diameter, operated by a pneumatic cylinder with an output of 120 N at 4 bar. The response time, for opening and closing, must not exceed 0,5 second.

 

8.

Exhaust gas evaluation.

 

9.

Flexible hose.

 

10.

Pressure gauge

2.3.2.   Diagram and markings

2.3.2.1.   A diagram and a cross-sectional drawing indicating the dimensions of the exhaust system(s) shall be attached to the information document referred to in Article 27(4) of Regulation (EU) No 168/2013.

2.3.2.2.   All original silencers shall bear at least the following:

 

the ‘e’ mark followed by the reference to the country which granted the type-approval;

 

the vehicle manufacturer’s name or trademark; and

 

the make and identifying part number in compliance with Article 39 of Regulation (EU) No 168/2013.

This reference shall be legible, indelible and visible in the position at which it is to be fitted.

2.3.2.3.   Any packing of original replacement silencer systems shall be marked legibly with the words ‘original part’ and the make and type references linked with the ‘e’ mark, together with the reference to the country of origin.

2.3.3.   Intake silencer

If the engine intake has to be fitted with an air filter or intake silencer in order to comply with the permissible noise level, the filter or silencer shall be regarded as part of the silencer and the requirements of point 2.3 will also apply to them.

  • 3. 
    Component type-approval of a non-original exhaust system or components thereof, as a separate technical unit, for two-wheel mopeds

This point applies to the component type-approval, as separate technical units, of exhaust systems or components thereof intended to be fitted to one or more particular types of moped as non-original replacement parts.

3.1.   Definition

3.1.1.   ‘Non-original replacement exhaust system or components thereof’ means any exhaust system component as defined in point 1.2 intended to be fitted to a moped to replace that of the type fitted to the moped when the information document provided for in Article 27(4) of Regulation (EU) No 168/2013 was issued.

3.2.   Application for component type-approval

3.2.1.   Applications for component type-approval for replacement exhaust systems or components thereof as separate technical units shall be submitted by the manufacturer of the system or by his authorised representative.

3.2.2.   For each type of replacement exhaust system or components thereof for which approval is requested, the component type-approval application shall be accompanied by the following documents in triplicate, and by the following particulars:

 

3.2.2.1.

description, in respect of the characteristics referred to in point 1.1, of the types of moped for which the system(s) or component(s) is/are intended; the numbers or symbols specific to the type of engine and moped shall be given;

 

3.2.2.2.

description of the replacement exhaust system stating the relative position of each of its components, together with the fitting instructions;

 

3.2.2.3.

drawings of each component to facilitate location and identification, and statement of materials used. These drawings shall also indicate the intended location of the mandatory component type-approval mark.

3.2.3.   The applicant shall submit, at the request of the technical service:

 

3.2.3.1.

two samples of the system for which component type-approval is requested;

 

3.2.3.2.

an exhaust system conforming to that originally fitted to the moped when the information document provided was issued;

 

3.2.3.3.

a moped representative of the type to which the replacement exhaust system is to be fitted, supplied in such a condition that, when fitted with a silencer of the same type as was originally fitted, it meets the requirements of either of the following two sections:

 

3.2.3.3.1.

if the moped referred to in point 3.2.3.3 is of a type which has been granted type-approval pursuant to the provisions of this Appendix:

 

3.2.3.3.1.1.

during the test in motion, it may not exceed by more than 1,0 dB(A) the applicable limit value laid down in point 2.1.1;

 

3.2.3.3.1.2.

during the stationary test, it may not exceed by more than 3,0 dB(A) the value recorded when the moped was granted type-approval, as indicated on the manufacturer’s data plate;

 

3.2.3.3.2.

if the moped referred to in point 3.2.3.3 is not of a type which has been granted type-approval in accordance with the requirements of this Appendix, it may not exceed by more than 1,0 dB(A) the limit value applicable to that type of moped when it first entered into service;

 

3.2.3.4.

a separate engine identical to that fitted to the moped referred in point 3.2.3.3., should the approval authorities deem it necessary.

3.3.   Specifications

3.3.1.   General specifications

The design, construction and mounting of the silencer shall be such that:

 

3.3.1.1.

the moped complies with the requirements of this Appendix under normal conditions of use, and in particular regardless of any vibrations to which it may be subjected;

 

3.3.1.2.

it displays reasonable resistance to the corrosion phenomena to which it is exposed, with due regard to the normal conditions of use of the moped;

 

3.3.1.3.

the ground clearance under the silencer as originally fitted, and the angle at which the moped can lean over, are not reduced;

 

3.3.1.4.

the surface does not reach unduly high temperatures;

 

3.3.1.5.

its outline has no projections or sharp edges;

 

3.3.1.6.

shock absorbers and suspension have adequate clearance;

 

3.3.1.7.

adequate safety clearance is provided for pipes;

 

3.3.1.8.

it is impact-resistant in a way that is compatible with clearly defined maintenance and installation requirements.

3.3.2.   Specifications for noise levels

 

3.3.2.1.

The acoustic efficiency of the replacement exhaust systems or components thereof shall be tested using the methods described in points 2.1.2, 2.1.3, 2.1.4 and 2.1.5. Where a replacement exhaust system or component thereof is fitted to the moped referred to in point 3.2.3.3, the noise-level values obtained shall not exceed those measured, in accordance with point 3.2.3.3, using the same moped fitted with the original equipment silencer both during the test in motion and during the stationary test.

3.3.3.   Testing of moped performance

 

3.3.3.1.

The replacement silencer shall be such as to ensure that the moped’s performance is comparable with that achieved with the original silencer or component thereof.

 

3.3.3.2.

The replacement silencer shall be compared with an originally-fitted silencer, also in new condition, fitted to the moped referred to in point 3.2.3.3.

 

3.3.3.3.

This test shall be carried out by measuring the engine power curve. The net maximum power and the top speed measurements with the replacement silencer shall not deviate by more than ± 5 % from those taken under the same conditions with the original equipment silencer.

3.3.4.   Additional provisions relating to silencers as separate technical units containing fibrous material

Fibrous material may not be used in the construction of such silencers unless the requirements set out in point 2.3.1 of this Annex are met.

3.3.5.   Evaluation of the pollutant emissions of vehicles equipped with a replacement silencer system

The vehicle referred to in point 3.2.3.3, equipped with a silencer of the type for which approval is requested, shall undergo the applicable environmental tests according to the type-approval of the vehicle.

The requirements regarding environmental performance shall be deemed to be fulfilled if the results meet the limit values according to the type-approval of the vehicle as set out in Annex VI(D) of Regulation (EU) No 168/2013.

3.3.6.   The marking of non-original exhaust systems or components thereof shall comply with the provisions of Article 39 of Regulation (EU) No 168/2013.

3.4.   Component type-approval

3.4.1.   Upon completion of the tests laid down in this Appendix, the approval authority shall issue a certificate corresponding to the model referred to in Article 30 (2) of Regulation (EU) No 168/2013. The component type-approval number shall be preceded by a rectangle surrounding the letter ‘e’ followed by the distinguishing number or letters of the Member State which issued or refused the component type-approval. The exhaust system which is granted system type-approval shall conform to the provisions of Annexes II and VI.

Appendix 2

Sound level test requirements for motorcycles (categories L3e and L4e)

  • 1. 
    Definitions

For the purposes of this Appendix:

 

1.1.

‘type of motorcycle as regards its sound level and exhaust system’ means motorcycles which do not differ in such essential respects as the following:

 

1.1.1.

type of engine (two- or four-stroke, reciprocating piston engine or rotary-piston engine, number and capacity of cylinders, number and type of carburettors or injection systems, arrangement of valves, net maximum power and corresponding speed). The cubic capacity of rotary-piston engines shall deemed to be double the volume of the chamber;

 

1.1.2.

Drive train, in particular the number and ratios of the gears of the transmission and final ratio;

 

1.1.3.

number, type and arrangement of exhaust systems;

 

1.2.

‘exhaust system’ or ‘silencer’ means a complete set of components necessary to limit the noise caused by a motorcycle engine and its exhaust;

 

1.2.1.

‘original exhaust system or silencer’ means a system of the type fitted to the vehicle at the time of type-approval or extension of type-approval. It may be that first fitted or a replacement;

 

1.2.2.

‘non-original exhaust system or silencer’ means a system of a type other than that fitted to the vehicle at the time of type-approval or extension of type-approval. It may be used only as a replacement exhaust system or silencer;

 

1.3.

‘exhaust systems of differing types’ means systems which are fundamentally different in one of the following ways:

 

1.3.1.

systems comprising components bearing different factory markings or trademarks;

 

1.3.2.

systems comprising any component made of materials of different characteristics or comprising components which are of a different shape or size;

 

1.3.3.

systems in which the operating principles of at least one component are different;

 

1.3.4.

systems comprising components in different combinations;

 

1.4.

‘component of an exhaust system’ means one of the individual components which together form the exhaust system (e.g. exhaust pipe work, the silencer proper) and the air intake system (air filter), if any.

If the engine has to be equipped with an air intake system (air filter or intake noise absorber) in order to comply with permissible noise levels, the filter or the absorber shall be treated as components having the same importance as the exhaust system.

  • 2. 
    Component type-approval in respect of the sound level and original exhaust system, as a separate technical unit, of a type of motorcycle

2.1.   Noise of the motorcycle in motion (measuring conditions and method for testing of the vehicle during component type-approval)

2.1.1.   Limits: see Part D of Annex VI to Regulation (EU) No 168/2013.

2.1.2.   Measuring instruments

2.1.2.1.   Acoustic measurements

The apparatus used for measuring the sound level shall be a precision sound-level meter of the type described in International Electro-technical Commission (IEC) publication 179 Precision sound-level meters, second edition. Measurements shall be taken using the ‘fast’ response and the ‘A’ weighting also described in that publication.

At the beginning and end of each series of measurements, the sound-level meter shall be calibrated in accordance with the manufacturer’s instructions, using an appropriate noise source (e.g. piston phone).

2.1.2.2.   Speed measurements

Engine speed and motorcycle speed on the test track shall be determined to within ± 3 %.

2.1.3.   Conditions of measurement

2.1.3.1.   Condition of the motorcycle

During the measurements, the motorcycle shall be in running order.

Before the measurements are taken, the motorcycle shall be brought to normal operating temperature. If the motorcycle is fitted with fans with an automatic actuating mechanism, this system shall not be interfered with during the noise measurements. For motorcycles with more than one driven wheel, only the drive provided for normal road operation may be used. Where a motorcycle is fitted with a sidecar, this shall be removed for the purposes of the test.

2.1.3.2.   Test site

The test site shall consist of a central acceleration section surrounded by a substantially flat test area. The acceleration section shall be flat; its surface shall be dry and such that surface noise remains low.

On the test site, the variations in the free sound field between the sound source at the centre of the acceleration section and the microphone shall not exceed 1,0 dB. This condition will be deemed to be met if there are no large objects which reflect sound, such as fences, rocks, bridges or buildings, within 50 m of the centre of the acceleration section. The surface covering of the test site shall conform to the requirements of Appendix 4.

The microphone shall not be obstructed in any way which could affect the sound field, and no person may stand between the microphone and the sound source. The observer carrying out the measurements shall so position himself as not to affect the readings of the measuring instrument.

2.1.3.3.   Miscellaneous

Measurements shall not be taken in poor atmospheric conditions. It shall be ensured that the results are not affected by gusts of wind.

For measurements, the A-weighted sound level of noise sources other than those of the vehicle to be tested and of wind effects shall be at least 10,0 dB(A) below the sound level produced by the vehicle. A suitable windscreen may be fitted to the microphone provided that account is taken of its effect on the microphone’s sensitivity and directional characteristics.

If the difference between the ambient noise and the measured noise is between 10,0 and 16,0 dB(A), the test results shall be calculated by subtracting the appropriate correction from the readings on the sound-level meter, as in the following graph:

Figure Ap2-1

Difference between ambient noise and noise to be measured

Image

2.1.4.   Method of measurement

2.1.4.1.   Nature and number of measurements

The maximum noise level expressed in A-weighted decibels (dB(A)) shall be measured as the motorcycle travels between lines AA′ and BB′ (Figure Ap2-2). The measurement will be invalid if an abnormal discrepancy is recorded between the peak value and the general sound level.

At least two measurements shall be taken on each side of the motorcycle.

2.1.4.2.   Positioning of the microphone

The microphone shall be positioned 7.5 m ± 0.2 m from the reference line CC′ (Figure Ap2-2) of the track and 1.2 m ± 0.1 m above ground level.

2.1.4.3.   Conditions of operation

The motorcycle shall approach line AA′ at an initial steady speed as specified in points 2.1.4.3.1 and 2.1.4.3.2. When the front of the motorcycle reaches line AA′, the throttle shall be fully opened as quickly as practically possible and kept in that position until the rear of the motorcycle reaches line BB′; the throttle shall then be returned as quickly as possible to the idle position.

For all measurements, the motorcycle shall be ridden in a straight line over the acceleration section keeping the longitudinal median plane of the motorcycle as close as possible to line CC′.

2.1.4.3.1.   Motorcycles with non-automatic gearboxes

2.1.4.3.1.1.   Approach speed

The motorcycle shall approach line AA′ at a steady speed

 

of 50 km/h, or

 

corresponding to an engine speed equal to 75 % of the engine speed at which maximum net power is developed,

whichever is the lower.

2.1.4.3.1.2.   Selection of gear ratio

2.1.4.3.1.2.1.   Motorcycles fitted with a gearbox with four ratios or fewer, whatever the cylinder capacity of their engines, shall be tested only in second gear.

2.1.4.3.1.2.2.   Motorcycles fitted with engines with a cylinder capacity not exceeding 175 cm3 and a gearbox with five ratios or more shall be tested only in third gear.

2.1.4.3.1.2.3.   Motorcycles fitted with engines having a cylinder capacity of more than 175 cm3 and a gearbox with five ratios or more shall be tested once in second gear and once in third gear. The result used shall be the average of the two tests.

2.1.4.3.1.2.4.   If, during the test carried out in second gear (see points 2.1.4.3.1.2.1 and 2.1.4.3.1.2.3), the engine speed on the approach to the line marking the end of the test track exceeds 100 % of the engine speed at which maximum net power is developed, the test shall be carried out in third gear and the noise level measured shall be the only one recorded as the test result.

2.1.4.3.2   Motorcycles with automatic gearboxes

2.1.4.3.2.1.   Motorcycles without a manual selector

2.1.4.3.2.1.1.   Approach speed

The motorcycle shall approach line AA′ at steady speeds of 30, 40 and 50 km/h or 75 % of the maximum road speed if that value is lower. The condition giving the highest sound level is chosen.

2.1.4.3.2.2.   Motorcycles equipped with a manual selector with X forward drive positions

2.1.4.3.2.2.1.   Approach speed

The motorcycle shall approach line AA′ at a steady speed of:

 

less than 50 km/h, the engine rotation speed being equal to 75 % of the engine speed at which maximum net power is developed, or

 

50 km/h, the engine rotation speed being less than 75 % of the engine speed at which maximum net power is developed.

If, in the test at a steady speed of 50 km/h, the gears change down to first, the approach speed of the motorcycle may be increased to a maximum of 60 km/h to avoid the downshift.

2.1.4.3.2.2.2.   Position of the manual selector

If the motorcycle is equipped with a manual selector with ‘X’ forward drive positions, the test shall be carried out with the selector in the highest position; the voluntary device for changing down (e.g. kick-down) shall not be used. If an automatic downshift takes place after line AA′, the test shall be started again using the second-highest position, or the third-highest position if necessary, in order to find the highest position of the selector at which the test can be performed without an automatic downshift (without using the kick-down).

2.1.4.4.   For hybrid L-category vehicles, the tests shall be performed twice under the following conditions:

 

(a)

condition A: batteries shall be at their maximum state of charge; if more than one ‘hybrid mode’ is available, the most electric mode shall be selected for the test;

 

(b)

condition B: batteries shall be at their minimum state of charge; if more than one ‘hybrid mode’ is available, the most fuel-consuming mode shall be selected for the test.

2.1.5.   Results (test report)

2.1.5.1.   The test report drawn up for the purpose of issuing the information folder according to the template referred to in Article 27(4) of Regulation (EU) No 168/2013 shall indicate any circumstances and factors affecting the results of the measurements.

2.1.5.2.   Readings taken shall be rounded to the nearest decibel.

If the figure following the decimal point is between 0 and 4, the total is rounded down and if between 5 and 9, it is rounded up.

Only measurements which vary by 2,0 dB(A) or less in two consecutive tests on the same side of the motorcycle may be used for the purpose of issuing the information document according to the template referred to in Article 27(4) of Regulation (EU) No 168/2013.

2.1.5.3.   To take account of inaccuracies, 1,0 dB(A) shall be deducted from each value obtained in accordance with point 2.1.5.2.

2.1.5.4.   If the average of the four measurements does not exceed the maximum permissible level for the vehicle category in question, the limit laid down in Part D of Annex VI to Regulation (EU) No 168/2013 will be deemed as being complied with. This average value shall be taken as the result of the test.

2.1.5.5.   If the average of four Condition A results and the average of four Condition B results do not exceed the permissible level for the vehicle category in question, the limits laid down in Part D of Annex VI to Regulation (EU) No 168/2013 shall be deemed as being complied with.

The highest average value shall be taken as the result of the test.

2.2.   Noise from stationary motorcycle (measuring conditions and method for testing of the vehicle in use)

2.2.1.   Sound-pressure level in the immediate vicinity of the motorcycle

In order to facilitate subsequent noise tests on motorcycles in use, the sound-pressure level in the immediate vicinity of the exhaust-system outlet shall be measured in accordance with the following requirements, the result being entered in the test report drawn up for the purpose of issuing the information document according to the template referred to in Article 27(4) of Regulation (EU) No 168/2013.

2.2.2.   Measuring instruments

A precision sound-level meter as defined in point 2.1.2.1 shall be used.

2.2.3.   Conditions of measurement

2.2.3.1.   Condition of the motorcycle

Before the measurements are taken, the motorcycle engine shall be brought to normal operating temperature. If the motorcycle is fitted with fans with an automatic actuating mechanism, this system shall not be interfered with during the noise measurements.

During the measurements, the gearbox shall be in neutral gear. If it is impossible to disconnect the drive train, the driving wheel of the motorcycle shall be allowed to rotate freely, e.g. by placing the vehicle on its centre stand.

2.2.3.2.   Test site (Figure Ap2-2)

Any area in which there are no significant acoustic disturbances may be used as a test site. Flat surfaces which are covered with concrete, asphalt or some other hard material and are highly reflective are suitable; surfaces consisting of earth which has been tamped down shall not be used. The test site shall be in the form of a rectangle the sides of which are at least 3 m from the outer edge of the motorcycle (handlebars excluded). There shall be no significant obstacles, e.g. no persons other than the rider and the observer may stand within this rectangle.

The motorcycle shall be positioned within the rectangle so that the microphone used for measurement is at least 1 m from any kerb.

2.2.3.3.   Miscellaneous

Instrument readings caused by ambient noise and wind effects shall be at least 10,0 dB(A) lower than the sound levels to be measured. A suitable windshield may be fitted to the microphone provided that account is taken of its effect on the sensitivity of the microphone.

2.2.4.   Method of measurement

2.2.4.1.   Nature and number of measurements

The maximum sound level expressed in A-weighted decibels (dB(A)) shall be measured during the period of operation laid down in point 2.2.4.3.

At least three measurements shall be taken at each measuring point.

2.2.4.2.   Positioning of the microphone (Figure Ap2-3)

The microphone shall be positioned level with the exhaust outlet or 0,2 m above the surface of the track, whichever is the higher. The microphone diaphragm shall face the exhaust outlet at a distance of 0,5 m from it. The axis of maximum sensitivity of the microphone shall be parallel to the surface of the track at an angle of 45 ±10° to the vertical plane of the direction of the exhaust emissions.

In relation to this vertical plane, the microphone shall be positioned on the side on which there is the maximum possible distance between the microphone and the outline of the motorcycle (handlebars excluded).

If the exhaust system has more than one outlet at centres less than 0.3 m apart, the microphone shall face the outlet which is nearest the motorcycle (handlebars excluded) or the outlet which is highest above the surface of the track. If the centres of the outlets are more than 0.3 m apart, separate measurements shall be taken for each of them, the highest figure recorded being taken as the test value.

2.2.4.3.   Operating conditions

The engine speed shall be held steady at:

 

((S)/(2)) if S is more than 5 000 rpm, or

 

((3S)/(4)), if S is not more than 5 000 rpm,

where S is the engine speed at which the maximum net power is developed.

When a constant engine speed is reached, the throttle shall be returned swiftly to the idle position. The sound level shall be measured during an operating cycle consisting of a brief period of constant engine speed and throughout the deceleration period, the maximum sound-level meter reading being taken as the test value.

2.2.5.   Results (test report)

2.2.5.1.   The test report drawn up for the purpose of issuing the information document according to the template referred to in Article 27(4) of Regulation (EU) No 168/2013 shall indicate all relevant data and particularly those used in measuring the noise of the stationary motorcycle.

2.2.5.2.   Values shall be read off the measuring instrument and rounded to the nearest decibel.

If the figure following the decimal point is between 0 and 4, the total is rounded down and if between 5 and 9, it is rounded up.

Only measurements which vary by no more than 2,0 dB(A) in three consecutive tests will be used.

2.2.5.3.   The highest of the three measurements will be taken as the test result.

Figure Ap2-2

Test for vehicle in motion

Image

Figure Ap2-3

Test for stationary vehicle

Image

2.3.   Original exhaust system (silencer)

2.3.1.   Requirements for silencers containing absorbent fibrous materials

2.3.1.1.   Absorbent fibrous material shall be asbestos-free and may be used in the construction of silencers only if it is held securely in place throughout the service life of the silencer and it meets the requirements of point 2.3.1.2 or 2.3.1.3.

2.3.1.2.   After removal of the fibrous material, the sound level shall comply with the requirements of point 2.1.1.

2.3.1.3.   The absorbent fibrous material may not be placed in those parts of the silencer through which the exhaust gases pass, and shall comply with the following requirements:

2.3.1.3.1.   the material shall be heated at a temperature of 650 °C ± 5 °C for four hours in a furnace without reduction in the average length, diameter or bulk density of the fibre;

2.3.1.3.2.   after being heated at 650 °C ± 5 °C for one hour in a furnace, at least 98 % of the material shall be retained in a sieve of nominal mesh size 250 μm complying with technical standard ISO 3310-1:2000 when tested in accordance with ISO standard 2559:2011;

2.3.1.3.3.   the material shall not lose more than 10.5 % of its weight after being soaked for 24 hours at 90 °C ± 5 °C in a synthetic condensate of the following composition:

 

1 N hydrobromic acid (HBr): 10 ml

 

1 N sulphuric acid (H2SO4): 10 ml

 

Distilled water to make up to 1 000 ml.

Note: The material shall be washed in distilled water and dried for one hour at 105 °C before weighing.

2.3.1.4.   Before the system is tested in accordance with point 2.1, it shall be put in normal working order by one of the following methods:

2.3.1.4.1.   Conditioning by continuous road operation

2.3.1.4.1.1.   Table Ap2-1 shows the minimum distance to be travelled for each category of motorcycle during conditioning:

Table Ap2-1

Minimum distance to be travelled during conditioning

 

L3e / L4e category vehicle (motorcycle) by engine capacity (cm3)

Distance

(km)

1.

≤ 80

4 000

2.

> 80 ≤ 175

6 000

3.

> 175

8 000

2.3.1.4.1.2   50 ± 10 % of this conditioning cycle shall consist of town driving and the remainder of long-distance runs at high speed; the continuous road cycle may be replaced by a corresponding test-track programme.

2.3.1.4.1.3.   The two types of driving shall be alternated at least six times.

2.3.1.4.1.4.   The complete test programme shall include at least ten breaks lasting at least three hours in order to reproduce the effects of cooling and condensation.

2.3.1.4.2.   Conditioning by pulsation

2.3.1.4.2.1.   The exhaust system or components thereof shall be fitted to the motorcycle or to the engine.

In the first case, the motorcycle shall be mounted on a roller dynamometer. In the second case, the engine shall be mounted on a test bench.

The test apparatus, as shown in detail in Figure Ap2-4, is fitted at the outlet of the exhaust system. Any other apparatus giving equivalent results is acceptable.

2.3.1.4.2.2.   The test equipment shall be adjusted so that the flow of exhaust gases is alternately interrupted and restored 2 500 times by a rapid-action valve.

2.3.1.4.2.3   The valve shall open when the exhaust gas back-pressure, measured at least 100 mm downstream of the intake flange, reaches a value of between 0.35 and 0.40 bar. Should the engine characteristics prevent this, the valve shall open when the gas back-pressure reaches a level equivalent to 90 % of that which can be measured before the engine stops. It shall close when this pressure differs by no more than 10 % from its stabilised value with the valve open.

2.3.1.4.2.4.   The time-lapse relay shall be set for the period in which exhaust gases are produced, calculated on the basis of the requirements of point 2.3.1.4.2.3.

2.3.1.4.2.5.   Engine speed shall be 75 % of the speed (S) at which the engine develops maximum power.

2.3.1.4.2.6.   The power indicated by the dynamometer shall be 50 % of the full-throttle power measured at 75 % of engine speed (S).

2.3.1.4.2.7.   Any drainage holes shall be closed off during the test.

2.3.1.4.2.8.   The entire test shall be completed within 48 hours. If necessary, a cooling period shall be allowed after each hour.

2.3.1.4.3.   Conditioning on a test bench

2.3.1.4.3.1.   The exhaust system shall be fitted to an engine representative of the type fitted to the motorcycle for which the system is designed and mounted on a test bench.

2.3.1.4.3.2.   Conditioning consists of the specified number of test bench cycles for the category of motorcycle for which the exhaust system was designed. Table Ap2-2 shows the number of cycles for each category of motorcycle:

Table Ap2-2

Number of test-bench cycles for conditioning

 

Category of motorcycle by cylinder capacity

(cm3)

Number of cycles

1.

≤ 80

6

2.

> 80 ≤ 175

9

3.

> 175

12

2.3.1.4.3.3.   Each test-bench cycle shall be followed by a break of at least six hours in order to reproduce the effects of cooling and condensation.

2.3.1.4.3.4.   Each test-bench cycle consists of six phases. The engine conditions and duration are as follows for each phase:

Table Ap2-3

Test cycle phases for bench testing

 

Phase

Conditions

Duration of phase

(minutes)

Engines with displacement less than 175 cm3

Engines with displacement of 175 cm3 or more

1

Idling

6

6

2

25 % load at 75 % S

40

50

3

50 % load at 75 % S

40

50

4

100 % load at 75 % S

30

10

5

50 % load at 100 % S

12

12

6

25 % load at 100 % S

22

22

Total time:

2 hours 30 mins

2 hours 30 mins

2.3.1.4.3.5.   During this conditioning procedure, at the request of the manufacturer, the engine and the silencer may be cooled so that the temperature recorded at a point not more than 100 mm from the exhaust gas outlet does not exceed that measured when the motorcycle is running at 110 km/h or 75 % S in top gear. The engine or motorcycle speeds shall be determined with an accuracy of ± 3 %.

Figure Ap2-4

Test apparatus for conditioning by pulsation

Image

 

1.

Inlet flange or sleeve for connection to the rear of the test exhaust system.

 

2.

Hand-operated regulating valve.

 

3.

Compensating reservoir with a maximum capacity of 40 l and a filling time of not less than one second.

 

4.

Pressure switch with an operating range of 0,05 to 2,5 bar.

 

5.

Time delay switch.

 

6.

Pulse counter.

 

7.

Quick-acting valve, such as exhaust brake valve 60 mm in diameter, operated by a pneumatic cylinder with an output of 120 N at 4 bar. The response time, for opening and closing, must not exceed 0,5 second.

 

8.

Exhaust gas evaluation.

 

9.

Flexible hose.

 

10.

Pressure gauge

2.3.2.   Diagram and markings

2.3.2.1.   A diagram and a cross-sectional drawing indicating the dimensions of the exhaust system shall be annexed to the information document according to the template referred to in Article 27(4) of Regulation (EU) No 168/2013.

2.3.2.2.   All original silencers shall bear at least the following:

 

the ‘e’ mark followed by the reference to the country which granted the type-approval;

 

the vehicle manufacturer’s name or trademark; and

 

the make and identifying part number.

This reference shall be legible, indelible and visible in the position at which it is to be fitted.

2.3.2.3.   Any packing of original replacement silencer systems shall be marked legibly with the words ‘original part’ and the make and type references linked with the ‘e’ mark and also the reference to the country of origin.

2.3.3.   Intake silencer

If the engine intake has to be fitted with an air filter or intake silencer in order to comply with the permissible sound level, the filter or silencer shall be regarded as part of the silencer and the requirements of point 2.3 also apply to them.

  • 3. 
    Component type-approval of a non-original exhaust system or components thereof, as technical units, for motorcycles

This section applies to the component type-approval, as technical units, of exhaust systems or components thereof intended to be fitted to one or more particular types of motorcycle as non-original replacement parts.

3.1.   Definition

3.1.1.   ‘Non-original replacement exhaust system or components thereof’ means any exhaust system component as defined in point 1.2 intended to be fitted to a motorcycle to replace that of the type fitted to the motorcycle when the information document according to the template referred to in Article 27(4) of Regulation (EU) No 168/2013 was issued.

3.2.   Application for component type-approval

3.2.1.   Applications for component type-approval for replacement exhaust systems or components thereof as separate technical units shall be submitted by the manufacturer of the system or by his authorised representative.

3.2.2.   For each type of replacement exhaust system or components thereof for which approval is requested, the component type-approval application shall be accompanied by the following documents in triplicate, and by the following particulars:

 

3.2.2.1.

description, in respect of the characteristics referred to in section 1.1 of this Appendix, of the types of motorcycle for which the system(s) or component(s) is/are intended; the numbers or symbols specific to the type of engine and motorcycle shall be given;

 

3.2.2.2.

description of the replacement exhaust system stating the relative position of each of its components, together with the fitting instructions;

 

3.2.2.3.

drawings of each component to facilitate location and identification, and statement of materials used. These drawings shall also indicate the intended location of the mandatory component type-approval mark.

3.2.3.   The applicant shall submit, at the request of the technical service:

 

3.2.3.1.

two samples of the system for which component type-approval is requested;

 

3.2.3.2.

an exhaust system conforming to that originally fitted to the motorcycle when the information document according to the template referred to in Regulation (EU) No 168/2013 was issued;

 

3.2.3.3.

a motorcycle representative of the type to which the replacement exhaust system is to be fitted, supplied in such a condition that, when fitted with a silencer of the same type as was originally fitted, it meets the requirements of either of the following two sections:

 

3.2.3.3.1.

If the motorcycle referred to in point 3.2.3.3 is of a type which has been granted type-approval pursuant to the provisions of this Appendix:

 

during the test in motion, it may not exceed by more than 1,0 dB(A) the limit value laid down in point 2.1.1;

 

during the stationary test, it may not exceed by more than 3,0 dB(A) the value recorded when the motorcycle was granted type-approval and indicated on the manufacturer’s data plate.

 

3.2.3.3.2.

If the motorcycle referred to in point 3.2.3.3 is not of a type which has been granted type-approval pursuant to the provisions of this Regulation, it may not exceed by more than 1,0 dB(A) the limit value applicable to that type of motorcycle when it first entered into service;

 

3.2.3.4.

a separate engine identical to that fitted to the motorcycle referred to in point 3.2.3.3., should the approval authorities deem it necessary.

3.3.   Markings and inscriptions

3.3.1.   Non-original exhaust systems or components thereof shall be marked in accordance with the requirements laid down in Article 39 of Regulation (EU) No 168/2013.

3.4.   Component type-approval

3.4.1.   Upon completion of the tests laid down in this Appendix, the approval authority shall issue a certificate corresponding to the model referred to in Article 30(2) of Regulation (EU) No 168/2013. The component type-approval number shall be preceded by a rectangle surrounding the letter ‘e’ followed by the distinguishing number or letters of the Member State which issued or refused the component type-approval. The exhaust system which is granted system type-approval shall conform to the provisions of Annexes II and VI.

3.5.   Specifications

3.5.1.   General specifications

The design, construction and mounting of the silencer shall be such that:

 

3.5.1.1.

the motorcycle complies with the requirements of this Appendix under normal conditions of use, and in particular regardless of any vibrations to which it may be subjected;

 

3.5.1.2.

it displays reasonable resistance to the corrosion phenomena to which it is exposed, with due regard to the normal conditions of use of the motorcycle;

 

3.5.1.3.

the ground clearance under the silencer as originally fitted, and the angle at which the motorcycle can lean over, are not reduced;

 

3.5.1.4.

the surface does not reach unduly high temperatures;

 

3.5.1.5.

its outline has no projections or sharp edges;

 

3.5.1.6.

shock absorbers and suspension have adequate clearance;

 

3.5.1.7.

adequate safety clearance is provided for pipes;

 

3.5.1.8.

it is impact-resistant in a way that is compatible with clearly-defined maintenance and installation requirements.

3.5.2.   Specifications for sound levels

 

3.5.2.1.

The acoustic efficiency of the replacement exhaust systems or components thereof shall be tested using the methods described in points 2.1.2, 2.1.3, 2.1.4 and 2.1.5.

With a replacement exhaust system or component thereof fitted to the motorcycle referred to in point 3.2.3.3, the noise-level values obtained shall not exceed the values measured, in accordance with point 3.2.3.3, using the same motorcycle fitted with the original equipment silencer both during the test in motion and during the stationary test.

3.5.3.   Testing of motorcycle performance

 

3.5.3.1.

The replacement silencer shall be such as to ensure that the motorcycle’s performance is comparable with that achieved with the original silencer or component thereof.

 

3.5.3.2.

The replacement silencer shall be compared with an originally-fitted silencer, also in new condition, fitted to the motorcycle referred to in point 3.2.3.3.

 

3.5.3.3.

This test is carried out by measuring the engine power curve. The net maximum power and the top speed measurements with the replacement silencer shall not deviate by more than ±5 % from those taken under the same conditions with the original equipment silencer.

3.5.4.   Additional provisions relating to silencers as separate technical units containing fibrous material

Fibrous material may not be used in the construction of such silencers unless the requirements set out in point 2.3.1 are met.

3.5.5.   Evaluation of the pollutant emissions of vehicles equipped with a replacement silencer system

The vehicle referred to in point 3.2.3.3, equipped with a silencer of the type for which approval is requested, shall undergo a type I, II and V test under the conditions described in the corresponding Annexes II, III and VI according to the type-approval of the vehicle.

The requirements regarding emissions shall be deemed to be fulfilled if the results are within the limit values according to the type-approval of the vehicle.

Appendix 3

Sound level test requirements for three-wheel mopeds, tricycles and quadricycles (categories L2e, L5e, L6e and L7e)

  • 1. 
    Definitions

For the purposes of this Appendix:

 

1.1.

‘type of three-wheel moped, tricycle or quadricycle as regards its sound level and exhaust system’ means three-wheel mopeds and tricycles which do not differ in such essential respects as the following:

 

1.1.1.

bodywork shape or materials (in particular the engine compartment and its soundproofing);

 

1.1.2.

vehicle length and width;

 

1.1.3.

type of engine (spark ignition or compression ignition, two- or four-stroke, reciprocating piston or rotary piston, number and capacity of cylinders, number and type of carburettors or injection systems, arrangement of valves, net maximum power and corresponding speed); the cubic capacity of rotary-piston engines shall deemed to be double the swept volume;

 

1.1.4.

drive train, in particular the number and ratios of the gears of the transmission and the final ratio;

 

1.1.5.

number, type and arrangement of exhaust systems;

 

1.2.

‘exhaust system’ or ‘silencer’ means a complete set of components necessary to limit the noise caused by the engine and exhaust of a three-wheel moped, tricycle or quadricycle;

 

1.2.1.

‘original exhaust system or silencer’ means a system of the type fitted to the vehicle at the time of type-approval or extension of type-approval. It may be that first fitted or a replacement;

 

1.2.2.

‘non-original exhaust system or silencer’ means a system of a type other than that fitted to the vehicle at the time of type-approval or extension of type-approval. It may be used only as a replacement exhaust system or silencer;

 

1.3.

‘exhaust systems of differing types’ means systems which are fundamentally different in one of the following ways:

 

1.3.1.

systems comprising components bearing different factory markings or trademarks;

 

1.3.2.

systems comprising any component made of materials of different characteristics or comprising components which are of a different shape or size;

 

1.3.3.

systems in which the operating principles of at least one component are different;

 

1.3.4.

systems comprising components in different combinations;

 

1.4.

‘component of an exhaust system’ means one of the individual components which together form the exhaust system (such as exhaust pipe work, the silencer proper) and the air intake system (air filter) if any.

If the engine has to be equipped with an air intake system (air filter or intake noise absorber) in order to comply with maximum permissible sound levels, the filter or the absorber must be treated as a component having the same importance as the exhaust system.

  • 2. 
    Component type-approval in respect of the sound level and original exhaust system, as a separate technical unit, of a type of three-wheel moped (L2e), a tricycle (L5e), a light quadricycle (L6e) or heavy quadricycles (L7e)

2.1.   Noise of the three-wheel moped, tricycle or quadricycle (measuring conditions and method for testing of the vehicle during component type-approval)

2.1.1.   The vehicle, its engine and its exhaust system shall be designed, constructed and assembled so that the vehicle complies with the requirements of this Appendix under normal conditions of use, regardless of any vibrations to which they may be subjected.

2.1.2.   The exhaust system shall be designed, constructed and mounted to resist the corrosion phenomena to which it is exposed.

2.2.   Specifications for noise levels

2.2.1.   Limits: see Part D of Annex VI to Regulation (EU) No 168/2013.

2.2.2.   Measuring instruments

2.2.2.1.   The apparatus used for measuring the noise level shall be a precision sound-level meter of the type described in International Electro-technical Commission (IEC) publication No 179 Precision sound-level meters, second edition. Measurements shall be carried out using the ‘fast’ response of the sound-level meter and the ‘A’ weighting also described in that publication.

At the beginning and end of each series of measurements, the sound-level meter shall be calibrated in accordance with the manufacturer’s instructions, using an appropriate noise source (e.g. a piston phone).

2.2.2.2.   Speed measurements.

Engine speed and vehicle speed on the test track shall be determined to within ±3 %.

2.2.3.   Conditions of measurement

2.2.3.1.   Condition of the vehicle

During the measurements, the vehicle shall be in running order (including coolant, oils, fuel, tools, spare wheel and rider). Before the measurements are taken, the vehicle shall be brought to the normal operating temperature.

2.2.3.1.1.   The measurements shall be taken with the vehicles unladen and without trailer or semitrailer.

2.2.3.2.   Test site

The test site shall consist of a central acceleration section surrounded by a substantially flat test area. The acceleration section shall be flat; its surface shall be dry and such that surface noise remains low.

On the test site, the variations in the free sound field between the sound source at the centre of the acceleration section and the microphone shall not exceed ±1.0 dB(A). This condition will be deemed to be met if there are no large objects which reflect sound, such as fences, rocks, bridges or buildings, within 50 m of the centre of the acceleration section. The surface covering of the test track shall conform to the requirements of Appendix 4.

The microphone shall not be obstructed in any way which could affect the sound field, and no person may stand between the microphone and the sound source. The observer carrying out the measurements shall so position himself as not to affect the readings of the measuring instrument.

2.2.3.3.   Miscellaneous

Measurements shall not be taken in poor atmospheric conditions. It shall be ensured that the results are not affected by gusts of wind.

For measurements, the A-weighted noise level of noise sources other than those of the vehicle to be tested and of wind effects shall be at least 10,0 dB(A) below the noise level produced by the vehicle. A suitable windscreen may be fitted to the microphone provided that account is taken of its effect on the sensitivity and directional characteristics of the microphone.

It the difference between the ambient noise and the measured noise is between 10,0 and 16,0 dB(A), the test results shall be calculated by subtracting the appropriate correction from the readings on the sound-level meter, as in the following graph:

Figure Ap3-1

Difference between ambient noise and noise level to be measured

Image

2.2.4.   Method of measurement

2.2.4.1.   Nature and number of measurements

The maximum noise level expressed in A-weighted decibels (dB(A)) shall be measured as the vehicle travels between lines AA′ and BB′ (Figure Ap3-2). The measurement will be invalid if an abnormal discrepancy between the peak value and the general noise level is recorded.

At least two measurements shall be taken on each side of the vehicle.

2.2.4.2.   Positioning of the microphone

The microphone shall be positioned 7,5 m ± 0,2 m from the reference line CC′ (Figure Ap3-2) of the track and 1,2 m ± 0,1 m above ground level.

2.2.4.3.   Conditions of operation

The vehicle shall approach line AA′ at an initial steady speed as specified in point 2.2.4.4. When the front of the vehicle reaches line AA′, the throttle shall be fully opened as quickly as practically possible and kept in that position until the rear of the vehicle reaches line BB′; the throttle shall then be returned as quickly as possible to the idle position.

For all measurements, the vehicle shall be ridden in a straight line over the acceleration section keeping the median longitudinal plane of the vehicle as close as possible to line CC′.

2.2.4.3.1.   In the case of articulated vehicles consisting of two inseparable components and regarded as constituting one single vehicle, the semitrailer shall not be taken into account with regard to the crossing of line BB′.

2.2.4.4.   Determining the steady speed to be adopted

2.2.4.4.1.   Vehicle without gearbox

The vehicle shall approach line AA′ at a steady speed corresponding either to a speed of rotation of the engine equal to three-quarters of that at which the engine develops its maximum power, or to three-quarters of the maximum speed of rotation of the engine permitted by the governor, or 50 km/h, whichever is slowest.

2.2.4.4.2.   Vehicle with manual gearbox

If the vehicle is fitted with a gearbox with two, three or four ratios, second gear shall be used. If the gearbox has more than four ratios, third gear shall be used. If the engine then reaches a speed of rotation beyond its maximum power rating, instead of second or third gear the next higher gear to allow line BB′ on the test track to be reached without exceeding this rating shall be engaged. Overdrive shall not be selected. If the vehicle has a dual-ratio final drive, the ratio selected shall be that corresponding to the highest speed of the vehicle. The vehicle shall approach line AA′ at a steady speed corresponding either to three-quarters of the engine rotation speed at which the engine develops its maximum power, or to three-quarters of the maximum engine rotation speed permitted by the governor, or 50 km/h, whichever is slowest.

2.2.4.4.3.   Vehicle with automatic gearbox

The vehicle shall approach line AA′ at a steady speed of 50 km/h or three-quarters of its maximum speed, whichever is slower. Where several forward drive positions are available, that producing the highest average acceleration of the vehicle between lines AA′ and BB′ shall be selected. The selector position that is used only for braking, manoeuvring or similar slow movements shall not be used.

2.2.4.5.   For hybrid vehicle, the tests shall be performed twice under the following conditions:

 

(a)

condition A: batteries shall be at their maximum state of charge; if more than one ‘hybrid mode’ is available, the most electric hybrid mode shall be selected for the test;

 

(b)

condition B: batteries shall be at their minimum state of charge; if more than one ‘hybrid mode’ is available, the most fuel-consuming hybrid mode shall be selected for the test.

2.2.5.   Results (test report)

2.2.5.1.   The test report drawn up for the purpose of issuing the information document according to the template referred to in Article 27(4) of Regulation (EU) No 168/2013 shall indicate any circumstances and influences affecting the results of the measurements.

2.2.5.2.   The values taken shall be rounded to the nearest decibel.

If the figure following the decimal point is 5, the total is rounded up.

Only measurements which vary by 2.0 dB(A) or less in two consecutive tests on the same side of the vehicle may be used for the purpose of issuing the information document according to the template referred to in Article 27(4) of Regulation (EU) No 168/2013.

2.2.5.3.   To take account of inaccuracies, 1,0 dB(A) shall be deducted from each value obtained in accordance with point 2.2.5.2.

2.2.5.4.   If the average of the four measurements does not exceed the maximum permissible level for the category of vehicle in question, the limit laid down in point 2.2.1 will be deemed as being complied with. This average value will constitute the result of the test.

2.2.5.5.   If the average of four results of Condition A and if this average of four results of Condition B do not exceed the maximum permissible level for the category to which the hybrid vehicle being tested belongs, the limits laid down in point 2.2.1 shall be deemed as being complied with.

The highest average value shall be taken as the result of the test.

2.3.   Measurement of the noise of the stationary vehicle (for testing the vehicle in use)

2.3.1.   Sound-pressure level in the immediate vicinity of the vehicle

In order to facilitate subsequent noise tests on vehicles in use, the sound-pressure level in the immediate vicinity of the exhaust-system outlet (silencer) shall also be measured in accordance with the following requirements, the measurement being entered in the test report drawn up for the purpose of issuing the document according to the template referred to in Article 32(1) of Regulation (EU) No 168/2013.

2.3.2.   Measuring instruments

A precision sound-level meter conforming in accuracy to point 2.2.2.1 shall be used.

2.3.3.   Conditions of measurement

2.3.3.1.   Condition of the vehicle

Before the measurements are taken, the vehicle engine shall be brought to normal operating temperature. If the vehicle is fitted with fans with an automatic actuating mechanism, this system shall not be interfered with during the noise measurements.

During the measurements, the gearbox shall be in neutral gear. If it is impossible to disconnect the drive train, the driving wheels of the moped or tricycle shall be allowed to rotate freely, e.g. by placing the vehicle on its centre stand or on rollers.

2.3.3.2.   Test site (see Figure Ap3-3)

Any area in which there are no significant acoustic disturbances may be used as a test site. Flat surfaces which are covered with concrete, asphalt or some other hard material and are highly reflective are suitable; surfaces consisting of earth which has been tamped down shall not be used. The test site shall be in the form of a rectangle the sides of which are at least 3 m from the outer edge of the vehicle (handlebars excluded). There shall be no significant obstacles, e.g. no persons other than the rider and the observer may stand within this rectangle.

The vehicle shall be positioned within the rectangle so that the microphone used for measurement is at least 1 m from any kerb.

2.3.3.3.   Miscellaneous

Instrument readings caused by ambient noise and wind effects shall be at least 10.0 dB(A) lower than the sound levels to be measured. A suitable windshield may be fitted to the microphone provided that account is taken of its effect on the sensitivity of the microphone.

2.3.4.   Method of measurement

2.3.4.1.   Nature and number of measurements

The maximum noise level expressed in 1-weighted decibels (dB(A)) shall be measured during the period of operation laid down in point 2.3.4.3.

At least three measurements shall be taken at each measurement point.

2.3.4.2.   Positioning of the microphone (Figure Ap3-3)

The microphone shall be positioned level with the exhaust outlet or 0,2 m above the surface of the track, whichever is higher. The microphone diaphragm shall face towards the exhaust outlet at a distance of 0,5 m from it. The axis of maximum sensitivity of the microphone shall be parallel to the surface of the track at an angle of 45° ± 10° to the vertical plane of the direction of the exhaust emissions.

In relation to this vertical plane, the microphone shall be located on the side on which there is the maximum possible distance between the microphone and the outline of the vehicle (handlebars excluded).

If the exhaust system has more than one outlet at centres less than 0,3 m apart, the microphone shall face the outlet which is nearest the vehicle (handlebars excluded) or the outlet which is highest above the surface of the track. If the centres of the outlets are more than 0,3 m apart, separate measurements shall be taken for each of them, the highest figure recorded being taken as the test value.

2.3.4.3.   Operating conditions

The engine speed shall be held steady at:

 

((S)/(2)) if S is more than 5 000 rpm,

 

((3S)/(4)) if S is not more than 5 000 rpm,

where S is the engine speed at which maximum power is developed.

When a constant engine speed is reached, the throttle shall be returned swiftly to the idle position. The noise level shall be measured during an operating cycle consisting of a brief period of constant engine speed and throughout the deceleration period, the maximum meter reading being taken as the test value.

2.3.5.   Results (test report)

2.3.5.1.   The test report drawn up for the purpose of issuing the information document according to the template referred to in Article 27(4) of Regulation (EU) No 168/2013 shall indicate all relevant data and particularly those used in measuring the noise of the stationary vehicle.

2.3.5.2.   Values read off the measuring instrument shall be rounded to the nearest decibel.

If the figure following the decimal point is 5, the total is rounded up.

Only measurements which vary by no more than 2,0 dB(A) in three consecutive tests will be used.

2.3.5.3.   The highest of the three measurements shall be taken as the test result.

Figure Ap3-2

Positions for testing the vehicle in motion

Image

Figure Ap3-3

Positions for testing the stationary vehicle

Image

2.4.   Original exhaust system (silencer)

2.4.1.   Requirements for silencers containing absorbent fibrous materials

2.4.1.1.   Absorbent fibrous material shall be asbestos-free and may be used in the construction of silencers only if it is held securely in place throughout the service life of the silencer and it meets the requirements of point 2.4.1.2 to 2.4.1.4.

2.4.1.2.   After removal of the fibrous material, the sound level shall comply with the requirements of point 2.2.1.

2.4.1.3.   The absorbent fibrous material may not be placed in those parts of the silencer through which the exhaust gases pass and shall comply with the following requirements:

2.4.1.3.1.   The material shall be heated at a temperature of 650 °C ± 5 °C for four hours in a furnace without reduction in the average length, diameter or bulk density of the fibre.

2.4.1.3.2.   After being heated at 923,2 ± 5 K (650 ± 5 °C) for one hour in a furnace, at least 98 % of the material shall be retained in a sieve of nominal mesh size 250 μm complying with technical standard ISO 3310-1:2000 when tested in accordance with ISO standard 2559:2011.

2.4.1.3.3.   The material shall lose no more than 10,5 % of its weight after being soaked for 24 hours at 362,2 ± 5 K (90 ± 5 °C) in a synthetic condensate of the following composition:

 

1 N hydrobromic acid (HBr): 10 ml

 

1 N sulphuric acid (H2SO4): 10 ml

 

distilled water to make up to 1 000 ml.

Note: The material shall be washed in distilled water and dried for one hour at 105 °C before weighing.

2.4.1.4.   Before the system is tested it shall be put in normal working order by one of the following methods:

2.4.1.4.1.   Conditioning by continuous road operation

 

2.4.1.4.1.1.

The table Ap3-1 shows the minimum distance to be travelled for each category of vehicle during conditioning:

Table Ap3-1

Minimum distance to be travelled during conditioning

 

Category of vehicle by cylinder capacity

(cm3)

Distance

(km)

1.

≤ 250

4 000

2.

> 250 ≤ 500

6 000

3.

> 500

8 000

 

2.4.1.4.1.2.

50 % ± 10 % of this conditioning cycle shall consist of town driving and the remainder of long-distance runs at high speed; the continuous road cycle may be replaced by a corresponding test-track programme.

 

2.4.1.4.1.3.

The two types of driving shall be alternated at least six times.

 

2.4.1.4.1.4.

The complete test programme shall include at least ten breaks lasting at least three hours in order to reproduce the effects of cooling and condensation.

2.4.1.4.2.   Conditioning by pulsation

 

2.4.1.4.2.1.

The exhaust system or components thereof shall be fitted to the vehicle or to the engine.

In the first case, the vehicle shall be mounted on a roller dynamometer. In the second case, the engine shall be mounted on a test bench.

The test apparatus, as shown in detail in Figure Ap3-4, is fitted at the outlet of the exhaust system. Any other apparatus giving equivalent results is acceptable.

 

2.4.1.4.2.2.

The test equipment shall be adjusted so that the flow of exhaust gases is alternately interrupted and restored 2 500 times by a rapid-action valve.

 

2.4.1.4.2.3.

The valve shall open when the exhaust gas back-pressure, measured at least 100 mm downstream of the intake flange, reaches a value of between 0,35 and 0,40 bar. Should the engine characteristics prevent this, the valve shall open when the gas back-pressure reaches a level equivalent to 90 % of the maximum that can be measured before the engine stops. It shall close when this pressure differs by no more than 10 % from its stabilised value with the valve open.

 

2.4.1.4.2.4.

The time-lapse relay shall be set for the period in which exhaust gases are produced, calculated on the basis of the requirements of point 2.4.1.4.2.3.

 

2.4.1.4.2.5.

Engine speed shall be 75 % of the speed (S) at which the engine develops maximum power.

 

2.4.1.4.2.6.

The power indicated by the dynamometer shall be 50 % of the full-throttle power measured at 75 % of engine speed (S).

 

2.4.1.4.2.7.

Any drainage holes shall be closed off during the test.

 

2.4.1.4.2.8.

The entire test shall be completed within 48 hours. If necessary, a cooling period shall be allowed after each hour.

2.4.1.4.3.   Conditioning on a test bench

 

2.4.1.4.3.1.

The exhaust system shall be fitted to an engine representative of the type fitted to the vehicle for which the system is designed and mounted on a test bench.

 

2.4.1.4.3.2.

Conditioning consists of the specified number of test-bench cycles for the category of vehicle for which the exhaust system was designed. The table shows the number of cycles for each category of vehicle.

Table Ap3-2

Number of conditioning cycles

 

Category of vehicle by cylinder capacity

(cm3)

Number of cycles

1.

≤ 250

6

2.

> 250 ≤ 500

9

3.

> 500

12

 

2.4.1.4.3.3.

Each test-bench cycle shall be followed by a break of at least six hours in order to reproduce the effects of cooling and condensation.

 

2.4.1.4.3.4.

Each test-bench cycle consists of six phases. The engine conditions and duration are as follows for each phase:

Table Ap3-3

Duration of test phases

 

Phase

Conditions

Duration of phase

(minutes)

1

Idling

6

6

2

25 % load at 75 % S

40

50

3

50 % load at 75 % S

40

50

4

100 % load at 75 % S

30

10

5

50 % load at 100 % S

12

12

6

25 % load at 100 % S

22

22

Total time:

2 hrs. 30 mins

2 hrs. 30 mins

 

2.4.1.4.3.5.

During this conditioning procedure, at the request of the manufacturer, the engine and the silencer may be cooled so that the temperature recorded at a point not more than 100 mm from the exhaust gas outlet does not exceed that measured when the vehicle is running at 110 km/h or 75 % S in top gear. The engine or vehicle speeds shall be determined with an accuracy of ± 3 %.

Figure Ap3-4

Test apparatus for conditioning by pulsation

Image

 

1.

Inlet flange or sleeve for connection to the rear of the test exhaust system.

 

2.

Hand-operated regulating valve.

 

3.

Compensating reservoir with a maximum capacity of 40 l and a filling time of not less than one second.

 

4.

Pressure switch with an operating range of 0,05 to 2,5 bar.

 

5.

Time delay switch.

 

6.

Pulse counter.

 

7.

Quick-acting valve, such as exhaust brake valve 60 mm in diameter, operated by a pneumatic cylinder with an output of 120 N at 4 bar. The response time, for opening and closing, must not exceed 0,5 second.

 

8.

Exhaust gas evaluation.

 

9.

Flexible hose.

 

10.

Pressure gauge.

2.4.2.   Diagram and markings

2.4.2.1.   A diagram and a cross-sectional drawing indicating the dimensions of the exhaust system shall be attached to the information document according to the template referred to in Article 27(4) of Regulation (EU) No 168/2013.

2.4.2.2.   All original silencers shall bear at least the following:

 

the ‘e’ mark followed by the reference to the country which granted the type-approval;

 

the vehicle manufacturer’s name or trademark; and

 

the make and identifying part number.

This reference shall be legible, indelible and visible in the position at which it is to be fitted.

2.4.2.3.   Any packing of original replacement silencer systems shall be marked legibly with the words ‘original part’ and the make and type references linked with the ‘e’ mark and also the reference to the country of origin.

2.4.3.   Intake silencer

If the engine intake has to be fitted with an air filter or intake silencer in order to comply with the permissible noise level, the filter or silencer shall be regarded as part of the silencer and the requirements of point 2.4 will also apply to them.

  • 3. 
    Component type-approval in respect of a non-original exhaust system or components thereof, as separate technical units, for three-wheel mopeds and tricycles

This section applies to the component type-approval, as separate technical units, of exhaust systems or components thereof intended to be fitted to one or more particular types of three-wheel mopeds and tricycles as non-original replacement parts.

3.1.   Definition

3.1.1.   ‘Non-original replacement exhaust system or components thereof’ means any exhaust system component as defined in point 1.2 intended to be fitted to a three- moped, tricycle or quadricycle to replace that of the type fitted to the three-wheel moped, tricycle or quadricycle when the information document according to the template referred to in Article 27(4) Regulation (EU) No 168/2013 was issued.

3.2.   Application for component type-approval

3.2.1.   Applications for component type-approval for replacement exhaust systems or components thereof as separate technical units shall be submitted by the manufacturer of the system or by his authorised representative.

3.2.2.   For each type of replacement exhaust system or components thereof for which approval is requested, the application for component type-approval shall be accompanied by the following documents in triplicate, and by the following particulars:

 

3.2.2.1.

description, in respect of the characteristics referred to in point 1.1, of the types of vehicle for which the systems or components are intended; the numbers or symbols specific to the type of engine and vehicle shall be given;

 

3.2.2.2.

description of the replacement exhaust system stating the relative positions of each of its components, together with the fitting instructions;

 

3.2.2.3.

drawings of each component to facilitate location and identification, and statement of materials used. These drawings shall also indicate the intended location of the mandatory component type-approval mark.

3.2.3.   At the request of the technical service, the applicant shall submit:

 

3.2.3.1.

two samples of the system for which component type-approval is requested;

 

3.2.3.2.

an exhaust system conforming to that originally fitted to the vehicle when the information document according to the template referred to in Article 27(4) of Regulation (EU) No 168/2013 was issued;

 

3.2.3.3.

a vehicle representative of the type to which the replacement exhaust system is to be fitted, supplied in such a condition that, when fitted with a silencer of the same type as was originally fitted, it meets the requirements of either of the following two sections:

 

3.2.3.3.1.

if the vehicle is of a type which has been granted type-approval pursuant to the provisions of this Appendix:

 
 

during the test in motion, it may not exceed by more than 1.0 dB(A) the limit value laid down in point 2.2.1.3;

 
 

during the stationary test, is may not exceed by more than 3.0 dB(A) the value indicated on the manufacturer’s statutory plate;

 

3.2.3.3.2.

if the vehicle is not of a type which has been granted type-approval pursuant to the provisions of this Appendix, it may not exceed by more than 1.0 dB(A) the limit value applicable to that type of vehicle when it first entered into service;

 

3.2.3.4.

a separate engine identical to that fitted to the vehicle referred to in point 3.2.3.3., should the approval authorities deem it necessary.

3.3.   Markings and inscriptions

3.3.1.   Non-original exhaust systems or components thereof shall be marked in accordance with the requirements of Article 39 of Regulation (EU) No 168/2013.

3.4.   Component type-approval

3.4.1.   Upon completion of the tests laid down in this Appendix, the approval authority shall issue a certificate corresponding to the model referred to in Article 30(2) of Regulation (EU) No 168/2013. The component type-approval number shall be preceded by a rectangle surrounding the letter ‘e’ followed by the distinguishing number or letters of the Member State which issued or refused the component type-approval.

3.5.   Specifications

3.5.1.   General specifications

The design, construction and mounting of the silencer shall be such that:

 

3.5.1.1.

the vehicle complies with the requirements of the Appendix under normal conditions or use, and in particular regardless of any vibrations to which it may be subjected;

 

3.5.1.2.

it displays reasonable resistance to the corrosion phenomena to which it is exposed, with due regard to normal conditions of use;

 

3.5.1.3.

the ground clearance under the silencer as originally fitted, and the angle at which the vehicle can lean over, are not reduced;

 

3.5.1.4.

the surface does not reach unduly high temperatures;

 

3.5.1.5.

its outline has no projections or sharp edges;

 

3.5.1.6.

shock absorbers and suspension have adequate clearance;

 

3.5.1.7.

adequate safety clearance is provided for pipes;

 

3.5.1.8.

it is impact-resistant in a way that is compatible with clearly-defined maintenance and installation requirements.

3.5.2.   Specifications for noise levels

 

3.5.2.1.

The acoustic efficiency of the replacement exhaust systems or components thereof shall be tested using the methods described in points 2.3 and 2.4.

With a replacement exhaust system or component thereof fitted to the vehicle referred to in point 3.2.3.3 of this Appendix, the noise-level values obtained shall meet the following conditions:

 

3.5.2.1.1.

they shall not exceed the noise-level values measured, in accordance with point 3.2.3.3, using the same vehicle fitted with the original equipment silencer both during the test in motion and during the stationary test.

3.5.3.   Testing of vehicle performance

 

3.5.3.1.

The replacement silencer shall be such as to ensure that the performance of the vehicle is comparable with that achieved with the original silencer or component thereof.

 

3.5.3.2.

The replacement silencer shall be compared with an originally-fitted silencer, also in new condition, fitted to the vehicle referred to in point 3.2.3.3.

 

3.5.3.3.

This test is carried out by measuring the engine power curve. The net maximum power and the top speed measurements with the replacement silencer shall not deviate by more than ±5 % from those taken under the same conditions with the original equipment silencer.

3.5.4.   Additional provisions relating to silencers as separate technical units containing fibrous material

Fibrous material may not be used in the construction of such silencers unless the requirements set out in point 2.4.1 are met.

3.5.5.   Evaluation of the pollutant emissions of vehicles equipped with a replacement silencer system.

The vehicle referred to in point 3.2.3.3, equipped with a silencer of the type for which approval is requested, shall undergo a type I, II and V test under the conditions described in the corresponding Annexes to this Regulation according to the type-approval of the vehicle.

The requirements regarding emissions shall be deemed to be fulfilled if the results are within the limit values according to the type-approval of the vehicle

Appendix 4

Test track specification

  • 0. 
    Introduction

This Appendix lays down specifications relating to the physical characteristics and the layout of the test track paving.

  • 1. 
    Required characteristics of surface

A surface is considered to conform to this Regulation if its texture and void content or noise absorption coefficient have been measured and found to fulfil the requirements of points 1.1 to 1.4 and the design requirements (point 2.2) have been met.

1.1.   Residual void content

The residual void content, Vc, of the test track paving mixture shall not exceed 8 %. The measurement procedure is set out in point 3.1.

1.2.   Noise absorption coefficient

If the surface fails to comply with the residual void content requirement, it is acceptable only if its noise absorption coefficient, α ≤ 0,10. The measurement procedure is set out in point 3.2.

The requirement of points 1.1 and 1.2 is also met if only noise absorption has been measured and found to be: α ≤ 0,10.

1.3.   Texture depth

The texture depth (TD) measured according to the volumetric method (see point 3.3) shall be:

TD ≥ 0,4 mm.

1.4.   Homogeneity of the surface

Every practical effort shall be made to ensure that the surface is as homogenous as possible within the test area. This includes the texture and void content, but it shall be noted that if the rolling process results in more effective rolling in some places than others, the texture may be different and unevenness causing bumps may occur.

1.5.   Period of testing

In order to check whether the surface continues to conform to the texture and void content or noise absorption requirements of this specification, periodic testing of the surface shall be performed at the following intervals:

 

(a)

for residual void content or noise absorption:

 

when the surface is new; if the surface meets the requirements when new, no further periodical testing is required,

 

if the surface does not meet the requirement when new, it may do so subsequently because surfaces tend to become clogged and compacted with time;

 

(b)

for texture depth (TD):

 

when the surface is new,

 

when the noise testing starts (NB at least four weeks after laying),

 

every twelve months thereafter.

  • 2. 
    Test surface design

2.1.   Area

When designing the test track layout, it is important to ensure that, as a minimum requirement, the area traversed by the vehicles running through the test strip is covered with the specified test material with suitable margins for safe and practical driving. This will require that the width of the track is at least 3 m and the length of the track extends beyond lines AA and BB by at least 10 m at either end. Figure Ap4-1 shows a plan of a suitable test site and indicates the minimum area which shall be machine-laid and machine-compacted with the specified test surface material.

Figure Ap4-1

Minimum requirements for test surface area

Image

2.2.   Design requirements for the surface

The test surface shall meet four design requirements:

 

(a)

it shall be a dense asphaltic concrete;

 

(b)

the maximum chipping size shall be 8 mm (tolerances allow from 6.3 to 10 mm);

 

(c)

the thickness of the wearing course shall be ≥ 30 mm;

 

(d)

the binder shall be a straight penetration-grade bitumen without modification.

As a guide to the test surface constructor, an aggregate grading curve which will give the desired characteristics is shown in Figure Ap4-2. In addition, Table Ap4-1 gives guidelines for obtaining the desired texture and durability. The grading curve fits the following formula:

Equation Ap4-1:

Formula

where:

 

d

square mesh sieve size, in mm

dmax

8 mm for the mean curve

dmax

10 mm for the lower tolerance curve

dmax

6,3 mm for the upper tolerance curve

In addition:

 

the sand fraction (0,063 mm < square mesh sieve size < 2 mm) shall include no more than 55 % natural sand and least 45 % crushed sand,

 

the base and sub-base shall ensure good stability and evenness, according to best road construction practice,

 

the chippings shall be crushed (100 % crushed faces) and of a material with a high resistance to crushing,

 

the chippings used in the mix should be washed,

 

no extra chippings shall be added onto the surface,

 

the binder hardness expressed as PEN value shall be 40 to 60, 60 to 80 or 80 to 100, depending on climatic conditions. As hard a binder as possible shall be used, provided this is consistent with common practice,

 

the temperature of the mix before rolling shall be such as to achieve the required void content by subsequent rolling. In order to satisfy the specifications of points 1.1 to 1.4 as regards compactness, attention shall be paid to an appropriate choice of mixing temperature, an appropriate number of passes and the choice of compacting vehicle.

Figure Ap4-2

Grading curve of the aggregate in the asphaltic mix, with tolerances

Image

Table Ap4-1

Design guidelines

 
 

Target values

Tolerances

 

By total mass of mix

By mass of the approcase

Mass of stones, square mesh sieve (SM) > 2 mm

47,6 %

50,5 %

± 5

Mass of sand 0,063 < SM < 2 mm

38,0 %

40,2 %

± 5

Mass of filter SM < 0,063 mm

8,8 %

9,3 %

± 2

Mass of binder (bitumen)

5,8 %

N.A.

± 0,5

Maximum chipping size

8 mm

6,3-10

Binder hardness

(see below)

 

Polished stone value (PSV)

> 50

 

Compactness, relative to Marshall compactness

98 %

 
  • 3. 
    Test methods

3.1   Measurement of the residual void content

For the purpose of this measurement, cores are taken from at least four different points of the track which are equally distributed in the test area between lines AA and BB (see Figure Ap4-1). In order to avoid creating a lack of homogeneity and unevenness in the wheel tracks, cores shall not be taken in the tracks themselves, but close to them. At least two cores shall be taken close to the wheel tracks and at least one approximately midway between the tracks and each microphone location.

If there is a suspicion that the homogeneity requirement is not met (see point 1.4), cores shall be taken from more points in the test area.

The residual void content must be determined for each core. The average value for all cores is calculated and compared with the requirement of point 1.1. In addition, no single core shall have a void value of over 10 %.

The test surface constructor is reminded that problems may arise where the test area is heated by pipes or electrical wires. Cores shall be taken from this area and such installations shall be carefully planned with respect to future core drilling locations. It is recommended that a few areas of approximately 200 × 300 mm be left where there are no wires or pipes, or where the latter are located deep enough not to be damaged by cores taken from the surface layer.

3.2.   Noise absorption coefficient

The noise absorption coefficient (normal incidence) is measured by the impedance tube method using the procedure specified in ISO 10534-1:1996: ‘Determination of sound absorption coefficient and impedance in impedance tubes – Part 1: Method using standing wave ratio’.

The same requirements apply to test specimens as to residual void content (see point 3.1).

The noise absorption is measured in the range 400 to 800 Hz and in the range 800 to 1 600 Hz (at least at the centre frequencies of third octave bands) and the maximum values shall be identified for both of these frequency ranges. The values for all test scores are averaged to constitute the final result.

3.3.   Volumetric macro texture measurement

Texture depth measurements are taken from at least ten points evenly spaced along the wheel tracks of the test strip and the average value is compared with the specified minimum texture depth. See Annex F to ISO 10844:2011 for a description of the procedure.

  • 4. 
    Stability in time and maintenance

4.1.   Age influence

It is expected that the tyre/road noise levels measured on the test surface may increase slightly in the first 6 to 12 months after construction.

The surface will achieve its required characteristics at least four weeks after construction.

Stability over time is determined mainly by the polishing and compaction caused by vehicles driving on the surface. It shall be periodically checked as stated in point 1.5.

4.2.   Maintenance of the surface.

Loose debris or dust which could significantly reduce the effective texture depth shall be removed from the surface. Salt may alter the surface temporarily or even permanently in such a way as to increase noise and it is therefore not recommended that it be used for de-icing.

4.3.   Repaving the test area

It is not necessary to repave more than the test strip (3 m wide in Figure Ap4-1) where vehicles are driving provided the area outside the strip met the residual void content or noise absorption requirements when it was measured.

  • 5. 
    Documentation of the surface and of tests performed on it

5.1.   Documentation of the test surface

The following data shall be given in a document describing the test surface:

 

(a)

the location of the test track;

 

(b)

type of binder, binder hardness, type of aggregate, maximum theoretical density of the concrete (‘DR’), thickness of the wearing course and grading curve determined from cores from the test track;

 

(c)

method of compaction (e.g. type of roller, roller mass, number of passes);

 

(d)

temperature of the mix, temperature of the ambient air and wind speed during laying of the surface;

 

(e)

date when the surface was laid and identity of contractor;

 

(f)

all, or at least the latest, test results, including:

 

(i)

the residual void content of each core;

 

(ii)

the locations in the test area from which the cores for void measurement were taken;

 

(iii)

the noise absorption coefficient of each core (if measured), specifying the results both for each core and each frequency range as well as the overall average;

 

(iv)

the locations in the test area from which the cores for absorption measurement were taken;

 

(v)

texture depth, including the number of tests and standard deviation;

 

(vi)

the institution responsible for tests (i) and (iii) and the type of equipment used;

 

(vii)

date of the test(s) and date when the cores were taken from the test track.

5.2.   Documentation of vehicle noise tests

In the document describing the vehicle noise test(s), it shall be stated whether all the requirements were fulfilled or not. Reference shall be made to a document in accordance with point 5.1.

ANNEX X

Testing procedures and technical requirements as regards propulsion unit performance

 

Appendix Number

Appendix title

Page

1.

Requirements concerning the method for measuring the maximum design vehicle speed

289

1.1

Procedure for defining the correction coefficient for the annular vehicle speed-test track

293

2.

Requirements concerning the methods for measuring the maximum torque and maximum net power of a propulsion containing a combustion engine or a hybrid propulsion type

294

2.1

Determination of the maximum torque and maximum net power of spark-ignition engines for vehicle categories L1e, L2e and L6e

295

2.2

Determination of the maximum torque and maximum net power of spark-ignition engines for vehicle categories L3e, L4e, L5e and L7e

301

2.2.1.

Measurement of maximum torque and maximum net engine power by means of the engine-temperature method

307

2.3.

Determination of the maximum torque and maximum net power of L-category vehicles equipped with a compression ignition engine

308

2.4.

Determination of the maximum torque and maximum power of L-category vehicles equipped with a hybrid propulsion

315

3.

Requirements concerning the methods for measuring the maximum torque and maximum continuous rated power of a pure electric propulsion type

316

4.

Requirements concerning the method for measuring the maximum continuous rated power, switch-off distance and maximum assistance factor of an L1e category vehicle designed to pedal referred to in Article 3(94b) of Regulation (EU) No 168/2013

317

  • 1. 
    Introduction
 

1.1.

In this Annex requirements are set out with regard to the output performance of the propulsion units of L-category vehicles, in particular with regard to measurement of the maximum design vehicle speed, the maximum torque, the maximum net power or maximum continuous rated power. In addition for L1e category vehicles designed to pedal specific requirements are set out to determine the switch-off distance and maximum assistance factor of the propulsion units.

 

1.2.

The requirements are custom tailored for L-category vehicles equipped with propulsion units referred to in Article 4(3) of Regulation (EU) No 168/2013.

  • 2. 
    Test procedures

The test procedures set out in appendices 1 to 4 shall be used for the type-approval of L-category vehicles.

Appendix 1

Requirements concerning the method for measuring the maximum design vehicle speed

  • 1. 
    Scope

Measurement of the maximum design vehicle speed is obligatory for L-category vehicles that are limited in maximum design vehicle speed in accordance with Annex I to Regulation (EU) No 168/2013, which concerns (sub-)categories L1e, L2e, L6e and L7e-B1 and L7e-C.

  • 2. 
    Test vehicle

2.1.   The test vehicles used for propulsion unit performance tests shall be representative of the vehicle type with regard to the propulsion unit performance produced in series and placed on the market.

2.2.   Preparation of the test vehicle

 

2.2.1.

The test vehicle shall be clean and only those accessories needed to enable the vehicle to undergo the test shall be in operation.

 

2.2.2.

The fuel-supply and the ignition settings, the viscosity of the lubricants for the mechanical parts in motion, and the tyre pressures shall be as required by the manufacturer.

 

2.2.3.

The engine, drive train and tyres of the test vehicle shall have been properly run-in in accordance with the manufacturer’s requirements.

 

2.2.4.

Before the test, all parts of the test vehicle shall be in a thermally stable state, at their normal operating temperature.

 

2.2.5.

The test vehicle shall be submitted at its mass in running order.

 

2.2.6.

The distribution of the loadings across the wheels of the test vehicle shall be as intended by the manufacturer.

  • 3. 
    Driver

3.1.   Uncabbed vehicle

 

3.1.1.

The driver shall have a mass of 75 kg ± 5 kg and be 1,75 m ± 0,05 m tall. For mopeds, these tolerances are reduced to ± 2 kg and ± 0,02 m respectively.

 

3.1.2.

The driver shall wear an adjusted one-piece suit or equivalent item of clothing.

 

3.1.3.

The driver shall be seated on the driver’s seat with his feet on the pedals or footrest and his arms extended normally. Where vehicles achieve a maximum speed of more than 120 km/h when their rider is in a seated position, the rider shall be equipped and positioned as recommended by the manufacturer and shall be in full control of the vehicle throughout the test. The driving position shall be the same throughout the test and described or represented by photographs in the test report.

3.2.   Cabbed vehicle

 

3.2.1.

The driver shall have a mass of 75 kg ± 5 kg. For mopeds, this tolerance is reduced to ± 2 kg.

  • 4. 
    Characteristics of the test track
 

4.1.

The tests shall be carried out on a road:

 

4.1.1.

which allows the maximum vehicle speed to be maintained along a measurement base as defined in point 4.2. The acceleration track preceding the measuring base shall be of the same type (surface and longitudinal profile) and be sufficiently long for the vehicle to reach its maximum speed;

 

4.1.2.

that is clean, smooth, dry and asphalted or surfaced in an equivalent manner;

 

4.1.3.

having a longitudinal gradient of not more than 1 % and a degree of banking of not more than 3 %. The variation in altitude between any two points on the test base shall not exceed 1 m.

 

4.2.

The possible configurations for the measuring base are illustrated in points 4.2.1., 4.2.2. and 4.2.3.

 

4.2.1.

Figure Ap1-1

Type 1

Image

 

4.2.2.

Figure Ap1-2

Type 2

Image

 

4.2.3.

Figure Ap1-3

Type 3

Image

 

4.2.3.1.

The two measuring bases L shall be equal in length and virtually parallel to each other.

 

4.2.3.2.

If both measuring bases are curvilinear in shape despite the requirements of point 4.1.3., the effects of centrifugal force shall be compensated for by the cross-section of the bends.

 

4.2.3.3.

Instead of the two bases L (see point 4.2.3.1.), the measuring base may coincide with the overall length of the annular test track. In this case, the minimum radius of the bends shall be 200 m and the effects of centrifugal force compensated for by the cross-section of the bends.

 

4.3.

Length L of the measuring base shall be selected in conjunction with the accuracy of the equipment and the methods used to measure testing time t so that the value for actual vehicle speed can be plotted to within ± 1 %. If the measuring equipment is of the manual type, length L of the measuring base shall not be less than 500 m. If a type 2 measuring base has been selected, electronic measuring equipment shall be used in order to determine time t.

  • 5. 
    Atmospheric conditions
 
 

Atmospheric pressure: 97 ± 10 kPa.

 
 

Ambient temperature: between 278,2 K and 318,2 K.

 
 

Relative humidity: 30 to 90 %.

 
 

Average wind speed, measured 1 m above the ground: < 3 m/s, permitting gusts of < 5 m/s.

  • 6. 
    Test procedures

6.1.   L1e vehicles equipped with power-controlled pedal assistance shall be tested according to the test procedure set out in point 4.2.6 of EN 15194:2009, on the maximum speed of a vehicle assisted by an electric motor. If the L1e vehicle is tested according to that test procedure, points 6.2 to 6.9. may be omitted.

6.2.   The gear ratio used during the test shall enable the vehicle to reach its maximum vehicle speed on level ground. The throttle control shall be kept fully open and any user-selectable propulsion operation mode shall be activated so as to deploy maximum propulsion unit performance.

6.3.   Drivers of uncabbed vehicles shall maintain their driving position as defined in point 3.1.3.

6.4.   The vehicle shall arrive at the measuring base at a constant vehicle speed. Type 1 and type 2 bases shall be travelled along in both directions in succession.

6.4.1.   Testing in a single direction may be accepted on a type 2 measuring base if, owing to the characteristics of the circuit, it is not possible to reach the maximum speed of the vehicle in both directions. In this case:

 

6.4.1.1.

the test run shall be repeated five times in immediate succession;

 

6.4.1.2.

the speed of the axial wind component shall not exceed 1 m/s.

6.5.   Both bases L on a type 3 measuring base shall be travelled along consecutively in a single direction, without interruption.

6.5.1.   If the measuring base coincides with the total length of the circuit, it shall be travelled along in a single direction at least twice. The difference between the extremes of the time measurements shall not exceed 3 %.

6.6.   The fuel and lubricant shall be those recommended by the manufacturer.

6.7.   The total time t needed to travel along the measuring base in both directions shall be determined to an accuracy of 0,7 %.

6.8.   Determination of average speed

Average speed V (km/h) for the test is determined as follows:

6.8.1.   Type 1 and type 2 measuring base

Equation Ap1-1:

Formula

where:

 

L

=

length of measuring base (m)

t

=

time (s) taken to travel along measuring base L (m).

6.8.2.   Type 2 measuring base, travelled along in a single direction

 
 

Equation Ap1-2:

v = va

where:

 
 

Equation Ap1-3:

Formula

where:

 

L

=

length of measuring base (m)

t

=

time (s) taken to travel along measuring base L (m).

6.8.3.   Type 3 measuring base

6.8.3.1.   Measuring base consisting of two parts L (see point 4.2.3.1.)

Equation Ap1-4:

Formula

where:

 

L

=

length of measuring base (m)

t

=

total time (s) needed to travel along both measuring bases L (m).

6.8.3.2.   Measuring base coinciding with the total length of the annular test track (see point 3.1.4.2.3.3)

 
 

Equation Ap1-5:

Formula

where:

 
 

Equation Ap1-6:

Formula

where:

 

L

=

length of trajectory actually followed on the annular speed-test track (m)

t

=

time (s) needed to complete a full lap

 
 

Equation Ap1-7:

Formula

where:

 

n

=

number of laps

ti

=

time (s) needed to complete each lap

k

=

correction factor (1,00 ≤ 1,05); this factor is specific to the annular test track used and is determined experimentally in line with Appendix 1.1.

6.9.   The average speed shall be measured at least twice in succession.

  • 7. 
    Maximum vehicle speed

The maximum vehicle speed of the test vehicle shall be expressed in kilometres per hour by the figure corresponding to the closest whole number to the arithmetical mean of the values for the vehicle speeds measured during the two consecutive tests, which shall not diverge by more than 3 %. If this arithmetical mean lies exactly between two whole numbers, it shall be rounded up to the next highest number.

  • 8. 
    Maximum vehicle speed measurement tolerances
 

8.1.

The maximum vehicle speed, as determined by the technical service to the satisfaction of the approval authority, may differ from the value in point 7 by ± 5 %.

Appendix 1.1

Procedure for defining the correction coefficient for the annular vehicle speed-test track

 

1.

Coefficient k relating to the annular test track shall be plotted up to the maximum permitted vehicle speed.

 

2.

Coefficient k shall be plotted for several vehicle speeds in such a way that the difference between two consecutive vehicle speeds will not be more than 30 km/h.

 

3.

For each vehicle speed selected, the test shall be carried out in line with the requirements of this Regulation, in two ways:

 

3.1.

Vehicle speed measured in a straight line vd.

 

3.2.

Vehicle speed measured on the annular test track va.

 

4.

For each vehicle speed measured, values va and vd shall be entered on a diagram similar to that in Figure Ap1.1-1, with the successive points linked by a segment of a straight line.

Figure Ap1.1-1

Image

 

5.

The coefficient k is given by the following formula for each vehicle speed measured:

Equation Ap1.1-1:

Formula

Appendix 2

Requirements concerning the methods for measuring the maximum torque and maximum net power of a propulsion containing a combustion engine or a hybrid propulsion type

  • 1. 
    General requirements
 

1.1.

Appendix 2.1. shall apply for the purpose of determining the maximum torque and maximum net power of (spark-ignition) engines for vehicle categories L1e, L2e and L6e.

 

1.2.

Appendix 2.2. shall apply for the purpose of determining the maximum torque and maximum net power of (spark-ignition) engines for vehicle categories L3e, L4e, L5e and L7e.

 

1.3.

Appendix 2.3. shall apply for the purpose of determining the maximum torque and maximum net power of L-category vehicles equipped with a compression-ignition engine.

 

1.4.

Appendix 2.4. shall apply for the purpose of determining the maximum total torque and maximum total power of L-category vehicles equipped with a hybrid propulsion.

 

1.5.

The torque measuring system shall be calibrated to take friction losses into account. The accuracy in the lower half of the measuring range of the dynamometer bench may be ± 2 % of measured torque.

 

1.6.

The tests may be carried out in air-conditioned test chambers where the atmospheric conditions can be controlled.

 

1.7.

In the case of non-conventional propulsion types and systems, and hybrid applications, particulars equivalent to those referred to in this Regulation shall be supplied by the manufacturer.

  • 2. 
    Torque verification requirement for L7e-B heavy all-terrain quads

In order to prove that a L7e-B all-terrain quad is designed for and capable of driving in off-road conditions and can therefore develop sufficient torque, the representative test vehicle shall be capable of climbing a gradient ≥ 25 % calculated for a solo vehicle. Before start of the verification test, the vehicle shall be parked on the slope (vehicle speed = 0 km/h).

Appendix 2.1

Determination of the maximum torque and maximum net power of spark-ignition engines for vehicle categories L1e, L2e and L6e

  • 1. 
    Accuracy of maximum torque and maximum net power measurements under full load
 

1.1.

Torque: ± 2 % of torque measured.

 

1.2.

Rotational speed: the measurement shall be accurate to ± 1 % of the full-scale reading.

 

1.3.

Fuel consumption ± 2 % for all the devices used.

 

1.4.

Temperature of engine induction air: ± 2 K.

 

1.5.

Barometric pressure: ± 70 Pa.

 

1.6.

Pressure in the exhaust and under pressure of the intake air: ± 25 Pa.

  • 2. 
    Test for the measurements of maximum torque and maximum net engine power

2.1.   Accessories

2.1.1.   Accessories to be fitted

During the test, the accessories needed for operation of the engine in the application in question (as set out in Table Ap2.1-1) shall be located on the test bench as far as possible in the position they would occupy for that application.

Table Ap2.1-1

Accessories to be fitted during the propulsion unit performance test in order to determine torque and net engine power

 

No

Accessories

Fitted for the torque and net power test

1

Air intake system

 

Induction manifold

 

Air filter

 

Induction silencer

 

Crankcase emission-control system

 

Electrical control device, where fitted

If series-mounted: yes

2

Exhaust system

 

Manifold

 

Pipe work (1)

 

Silencer

 

Exhaust pipe

 

Electrical control device, where fitted

If series-mounted: yes

3

Carburettor

If series-mounted: yes

4

Fuel injection system

 

Upstream filter

 

Filter

 

Fuel supply pump and high pressure pump if applicable

 

Compressed air pump in the case of DI air assist

 

Pipe work

 

Injector

 

Air inlet flap (2), where fitted

 

Fuel pressure / flow regulator, where fitted

If series-mounted: yes

5

Maximum rotational speed-or power governors

If series-mounted: yes

6

Liquid-cooling equipment

 

Radiator

 

Fan (3)

 

Water Pump

 

Thermostat (4)

If series-mounted: yes (5)

7

Air cooling

 

Cowl

 

Blower

 

Cooling temperature-regulating device(s)

 

Auxiliary bench blower

If series-mounted: yes

8

Electrical equipment

If series-mounted: yes (6)

9

Pollution-control devices (7)

If series-mounted: yes

9

Lubrication system

 

Oil feeder

If series-mounted: yes

2.1.3.   Accessories not to be fitted

Certain vehicle accessories which are needed only for use of the vehicle itself, but which are likely to be mounted on the engine, shall be removed for the tests.

The power absorbed by fixed equipment under no load may be determined and added to the power measured.

2.1.4.   The radiator, fan, fan nozzle, water pump and thermostat shall, on the test bench, occupy as far as possible the same position relative to each other as if they were on the vehicle. If the radiator, fan, fan nozzle, water pump or thermostat have a position on the test bench which is different from that on the vehicle, the position on the test bench shall be described and noted in the test report.

2.2.   Setting conditions

The conditions applying to settings during the tests to determine maximum torque and maximum net power are set out in Table Ap2.1-2.

Table Ap2.1-2

Setting conditions

 

1

Setting of carburettor(s)

Setting carried out in accordance with the manufacturer’s specifications for series production applied, without any other change, to the use under consideration

2

Setting of fuel injection pump flow-rate

3

Ignition or injection setting (advance curve)

4

(Electronic) Throttle Control

5

Any other rotational speed governor setting

6

(Noise and tailpipe) emission abatement system settings and devices

2.3.   Test conditions

2.3.1.   The tests to determine maximum torque and maximum net power shall be carried out at full throttle, with the engine equipped as specified in Table Ap2.1-1.

2.3.2.   The measurements shall be carried out under normal, stable operating conditions and the air supply to the engine shall be adequate. The engine shall have been run in under the conditions recommended by the manufacturer. The combustion chambers may contain deposits, but in limited quantities.

2.3.3.   The test conditions selected, such as the temperature of the induction air, shall resemble the reference conditions (see point 3.2.) as closely as possible in order to reduce the correction factor.

2.3.4.   The temperature of the engine induction air (ambient air) shall be measured at the most 0,15 m upstream of the air filter inlet or, if there is no filter, 0,15 m from the inlet air trumpet. The thermometer or thermocouple shall be protected against heat radiation and be placed directly in the airstream. It shall also be protected against vaporised fuel. An adequate number of positions shall be used in order to yield a representative average inlet temperature.

2.3.5.   No measurement shall be taken until the torque, rate of rotation and temperatures have remained substantially constant for at least 30 seconds.

2.3.6.   Once a rate of rotation has been selected for the measurements, its value shall not vary by more than ± 2 %.

2.3.7.   Observed brake load and inlet-air temperature data shall be taken simultaneously and shall be the average of two stabilised consecutive values. In the case of the brake load, these values shall not vary by more than 2 %.

2.3.8.   Where an automatically triggered device is used to measure rotational speed and consumption, the measurement shall last for at least ten seconds; if the measuring device is manually controlled, that period shall be at least 20 seconds.

2.3.9.   The temperature of the liquid coolant recorded at the engine outlet shall be maintained at ± 5 K of the upper thermostat setting temperature specified by the manufacturer. If the manufacturer does not indicate any values, the temperature shall be 353,2 K ± 5 K.

In the case of air-cooled engines, the temperature at a point specified by the manufacturer shall be maintained at + 0/– 20 K of the maximum temperature intended by the manufacturer under the reference conditions.

2.3.10.   The fuel temperature shall be measured at the carburettor or injection system inlet and kept within the limits laid down by the manufacturer.

2.3.11.   The temperature of the lubricating oil measured in the oil sump or at the outlet from the oil cooler, if fitted, shall be maintained within the limits established by the engine manufacturer.

2.3.12.   The outlet temperature of the exhaust gases shall be measured at right angles to the exhaust flange(s) or manifold(s) or orifices.

2.3.13.   Test fuel

The test fuel to be used shall be the reference fuel referred to in Appendix 2 of Annex II.

2.4.   Test procedure

Measurements shall be taken at a sufficient number of engine speeds to define correctly the complete power curve between the lowest and the highest governed engine speeds recommended by the manufacturer. This range of speeds shall include the speeds of revolution at which the engine produces its maximum torque and at which it produces its maximum power. For each speed, the average of at least two stabilised measurements is to be determined.

2.5.   The data to be recorded shall be those set out in the template of the test report referred to in Article 32(1) of Regulation (EU) No 168/2013

  • 3. 
    Power and torque correction factors

3.1.   Definition of factors α1 and α2

3.1.1.   α1 and α2 shall be factors by which the torque and power measured are to be multiplied in order to determine the torque and power of an engine, taking account of the efficiency of the transmission (factor α2) used during the tests and in order to bring them within the reference atmospheric conditions specified in 3.2.1 (factor α1). The power correction formula is as follows:

Equation Ap2.1-1:

Formula

where:

 

P0

=

the corrected power (i.e. the power under the reference conditions at the end of the crankshaft);

α1

=

the correction factor for reference atmospheric conditions;

α2

=

the correction factor for the efficiency of the transmission;

P

=

the power measured (power observed).

3.2.   Reference atmospheric conditions

3.2.1.   Temperature: 298,2 K (25 °C)

3.2.2.   Dry reference pressure (pso): 99 kPa (990 mbar)

Note: the dry reference pressure is based on a total pressure of 100 kPa and a water vapour pressure of 1 kPa.

3.2.3.   Atmospheric test conditions

3.2.3.1.   During the test, the atmospheric conditions shall lie within the following range:

283,2 K < T < 318,2 K

where T is the test temperature (K).

3.3.   Determination of the correction factor α1  (8)

Equation Ap2.1-2:

Formula

where:

 

T

=

the absolute temperature of the ingested air

ps

=

the dry atmospheric pressure in kilopascals (kPa), i.e. the total barometric pressure minus the water vapour pressure.

3.3.1.   Equation Ap2.1-2 applies only if:

0,93 ≤ α1 ≤ 1,07

If the limit values are exceeded, the corrected value obtained and the test conditions (temperature and pressure) shall be stated exactly in the test report.

3.4.   Determination of the correction factor for mechanical efficiency of the transmission α2

Where:

 

the measuring point is the output side of the crankshaft, this factor is equal to 1;

 

the measuring point is not the output side of the crankshaft, this factor is calculated using the formula:

Equation Ap2.1-2:

Formula

where nt is the efficiency of the transmission located between the crankshaft and the measuring point.

This transmission efficiency nt is determined from the product (multiplication) of efficiency nj of each of the components of the transmission:

Equation Ap2.1-3:

Formula

Table Ap2.1-3

Efficiency nj of each of the components of the transmission

 

Type

Efficiency

Gear wheel

Spur gear

0,98

Helical gear

0,97

Bevel gear

0,96

Chain

Roller

0,95

Silent

0,98

Belt

Cogged

0,95

Vee

0,94

Hydraulic coupling or convertor

Hydraulic coupling (9)  (10)

0,92

Hydraulic convertor (9)  (10)

0,92

  • 4. 
    Maximum torque and maximum net power measurement tolerances

The maximum torque and the maximum net power of the engine as determined by the technical service to the satisfaction of the approval authority shall have a maximum acceptable tolerance of:

Table Ap2.1-4

Acceptable measurement tolerances

 

Measured power

Acceptable tolerance maximum torque and maximum power

< 1 kW

≤ 10 %

1 kW ≤ measured power ≤ 6 kW

≤ 5 %

Engine speed tolerance when performing maximum torque and net power measurements: ≤ 3 %

 

  • (1) 
    If it is difficult to use the standard exhaust system, an exhaust system causing an equivalent pressure drop may be fitted for the test with the agreement of the manufacturer. In the test laboratory when the engine is in operation, the exhaust gas extraction system shall not cause in the extraction flue at the point where it is connected to the vehicle’s exhaust system a pressure differing from atmospheric pressure by ± 740 Pa (7,40 mbar), unless, before the test, the manufacturer accepts a higher back pressure.
  • (2) 
    The air inlet flap shall be that which controls the pneumatic inject pump regulator.
  • (3) 
    Where a fan or blower may be disengaged, the net engine power shall first of all be stated with the fan (or blower) disengaged, followed by the net engine power with the fan (or blower) engaged. Where a fixed electrically or mechanically-operated fan cannot be fitted on the test bench, the power absorbed by that fan shall be determined at the same rotational speeds as those used when the engine power is measured. That power is deducted from the corrected power in order to obtain the net power.
  • (4) 
    The thermostat may be locked in the fully open position.
  • (5) 
    The radiator, fan, fan nozzle, water pump and thermostat shall, on the test bench, occupy as far as possible the same position relative to each other as if they were on the vehicle. If the radiator, fan, fan nozzle, water pump or thermostat have a position on the test bench which is different from that on the vehicle, this shall be described and noted in the test report. The liquid coolant shall be circulated solely by the water pump for the engine. It may be cooled either by the engine radiator or by an outside circuit, provided that the pressure drops within that circuit remain substantially the same as those in the engine cooling system. If fitted, the engine blind shall be open.
  • (6) 
    Minimum generator output: the generator supplies the current that is strictly needed to supply the accessories that are essential to the operation of the engine. The battery shall not receive any charge during the test.
  • (7) 
    Anti-pollution provisions may include, for example, exhaust-gas recirculation (EGR) system, catalytic converter, thermal reactor, secondary air-supply system and fuel-evaporation protecting system.
  • (8) 
    The test may be carried out in temperature-controlled test chambers where the atmospheric conditions can be controlled.
  • (9) 
    The test may be carried out in temperature-controlled test chambers where the atmospheric conditions can be controlled.
  • If not locked up.

Appendix 2.2

Determination of the maximum torque and maximum net power of spark-ignition engines for vehicle categories L3e, L4e, L5e and L7e

  • 1. 
    Accuracy of the measurements of maximum net power and maximum torque at full load
 

1.1.

Torque: ± 1 % of the torque measured (1).

 

1.2.

Rotational speed: the measurement shall be accurate to +/– 1 % of the full-scale reading.

 

1.3.

Fuel consumption: ± 1 % overall for the apparatus used.

 

1.4.

Engine inlet air temperature: ± 1 K.

 

1.5.

Barometric pressure ± 70 Pa

 

1.6.

Exhaust pressure and drop in intake air: ± 25 Pa

  • 2. 
    Tests to measure the maximum torque and maximum net engine power

2.1.   Accessories

2.1.1.   Accessories to be fitted

During the test, it shall be possible to locate the accessories needed for operation of the engine in the application in question (as referred to in Table Ap2.2-1 on the test bench as far as possible in the positions that they would occupy for that application.

Table Ap2.2-1

Accessories to be fitted during the propulsion unit performance test in order to determine torque and net engine power

 

No

Accessories

Fitted for the torque and net power test

1

Air intake system

 

Induction manifold

 

Air filter

 

Induction silencer

 

Crankcase emission-control system

 

Electrical control device, where fitted

If series-mounted: yes

2

Induction manifold heater

If series-mounted: yes (if possible, it shall be set in the most favourable position)

3

Exhaust system

 

Exhaust manifold

 

Exhaust clean-up system (secondary air system) (where fitted)

 

Pipe work1

 

Silencer1

 

Exhaust pipe1

 

Electrical control device, where fitted

If series-mounted: yes

4

Carburettor

If series-mounted: yes

5

Fuel injection system

 

Upstream filter

 

Filter

 

Fuel supply pump and high pressure pump if applicable

 

High-pressure lines

 

Injector

 

Air inlet flap2, where fitted

 

Fuel pressure / flow regulator, where fitted

If series-mounted: yes

6

Maximum rotational speed-or power governors

If series-mounted: yes

7

Liquid-cooling equipment

 

Engine bonnet

 

Radiator

 

Fan3

 

Fan cowl

 

Water pump

 

Thermostat4

If series-mounted: yes5

8

Air cooling

 

Cowl

 

Blower3

 

Cooling temperature-regulating device(s)

 

Auxiliary bench blower

If series-mounted: yes

9

Electrical equipment

If series-mounted: yes6

10

Super-charger or turbocharger, where fitted

 

Compressor driven directly by the engine or by the exhaust gases

 

Charge air cooler (2)

 

Coolant pump or fan (engine driven)

 

Coolant flow control device, where fitted.

If series-mounted: yes

11

Pollution-control devices7

If series-mounted: yes

12

Lubrication system

 

Oil feeder

 

Oil cooler, where fitted.

If series-mounted: yes

2.1.3.   Accessories to be removed

Certain accessories which are necessary only for the operation of the vehicle itself, and which may be mounted on the engine, shall be removed for the test.

Where accessories cannot be removed, the power absorbed by them under no load may be determined and added to the engine power measured.

2.2.   Setting conditions

The conditions applying to settings during the tests to determine maximum torque and maximum net power are set out in Table Ap2.1-2.

Table Ap2.2-2

Setting conditions

 

1

Setting of carburettor(s)

Setting carried out in accordance with the manufacturer’s specifications for series production applied, without any other change, to the use under consideration

2

Setting of injection pump flow-rate

3

Ignition or injection setting (advance curve)

4

(Electronic) Throttle control

5

Any other rotational speed governor setting

6

(Noise and tailpipe) emission abatement system settings and devices

2.3.   Test conditions

2.3.1.   The maximum-torque and net-power tests shall be conducted at full throttle, the engine being equipped as specified in Table Ap2.2-1.

2.3.2.   The measurements shall be carried out under normal, stabilised operating conditions with an adequate fresh-air supply to the engine. The engine shall have been run in accordance with the manufacturer’s recommendations. Combustion chambers may contain deposits, but in limited quantities.

2.3.3.   The test conditions selected, such as air inlet temperature, shall resemble reference conditions (see point 3.2.) as closely as possible in order to minimise the magnitude of the correction factor.

2.3.4.   Where the cooling system on the test bench meets the minimum conditions for proper installation but nevertheless does not enable adequate cooling conditions to be reproduced and thus the measurements to be carried out in normal, stable operating conditions, the method described in Appendix 1 may be used.

2.3.5.   The minimum conditions which shall be fulfilled by the test installation and the scope for conducting the tests in accordance with Appendix 1 are laid down as follows:

 

2.3.5.1.

v1 is the maximum speed of the vehicle;

v2 is the maximum velocity of the cooling air flow at the fan delivery side;

Ø is the cross-section of the cooling air flow.

 

2.3.5.2.

If v2 ≥ v1 and Ø ≥ 0,25 m2, the minimum conditions are fulfilled. If it is not possible to stabilise the operating conditions, the method described in Appendix 1 shall apply.

 

2.3.5.3.

If v2 < v1 or Ø < 0,25 m2:

 

2.3.5.3.1.

if it is possible to stabilise the operating conditions, the method described in point 3.3. shall be applied;

 

2.3.5.3.2.

if it is not possible to stabilise the operating conditions:

 

2.3.5.3.2.1.

if v2 ≥ 120 km/h and Ø ≥ 0,25 m2, the installation fulfils the minimum conditions and the method described in Appendix 1 may be applied;

 

2.3.5.3.2.2.

if v2 ≥ 120 km/h or Ø < 0,25 m2, the installation does not fulfil the minimum conditions and the test equipment cooling system shall be improved.

 

2.3.5.3.2.3.

However, in this case, the test may be carried out by means of the method described in Appendix 1, subject to approval by the manufacturer and the approval authority.

2.3.6.   The temperature of the (ambient) inlet air to the engine shall be measured at no more than 0,15 m upstream from the point of entry into the air cleaner or, if no air cleaner is used, within 0,15 m of the air-inlet trumpet. The thermometer or thermocouple shall be shielded from radiant heat and be placed directly in the airstream. It shall also be shielded from fuel spray-back.

A sufficient number of locations shall be used to give a representative average inlet temperature.

2.3.7.   No data shall be taken until torque, speed and temperature have remained substantially constant for at least 30 seconds.

2.3.8.   The engine speed during a run or reading shall not deviate from the selected speed by more than ± 1 % or ± 10 min– 1, whichever is greater.

2.3.9.   Observed brake load and inlet-air temperature data shall be taken simultaneously and shall be the average of two stabilised consecutive values. In the case of the brake load, these values shall not vary by more than 2 %.

2.3.10.   The temperature of the coolant at the outlet from the engine shall be kept within ± 5 K of the upper thermostatically controlled temperature specified by the manufacturer. If no temperature is specified by the manufacturer, the temperature shall be 353,2 ± 5 K.

For air-cooled engines, the temperature at a point indicated by the manufacturer shall be kept between + 0/ – 20 K of the maximum temperature specified by the manufacturer under the reference conditions.

2.3.11.   The fuel temperature shall be measured at the inlet of the carburettor or injection system and be maintained within the limits set by the manufacturer.

2.3.12.   The temperature of the lubricating oil measured in the oil sump or at the outlet from the oil cooler, if fitted, shall be maintained within the limits stipulated by the engine manufacturer.

2.3.13.   The outlet temperature of the exhaust gases shall be measured at right angles to the exhaust flange(s), manifold(s) or orifices.

2.3.14.   Where an automatically triggered device is used to measure engine speed and consumption, the measurement shall last at least ten seconds; if the measuring device is manually controlled, it shall measure for at least 20 seconds.

2.3.15.   Test fuel

The test fuel to be used shall be the reference fuel referred to in Appendix 2 of Annex II.

2.3.16.   If it is not possible to use the standard exhaust silencer, a device shall be used for the test that is compatible with the engine’s normal operating conditions, and specified by the manufacturer.

During the laboratory tests in particular, when the engine is running, the exhaust gas extractor shall not, at the point where the exhaust system is connected to the test bench, give rise in the exhaust-gas extraction duct to a pressure differing from the atmospheric pressure by more than ± 740 Pa (7,4 mbar) unless the manufacturer has deliberately specified the back pressure existing before the test; in this case, the lower of the two pressures shall be used.

2.4.   Test procedure

Measurements shall be taken at a sufficient number of engine speeds to define correctly the complete power curve between the lowest and the highest engine speeds recommended by the manufacturer. This range of speeds shall include the speeds of revolution at which the engine produces its maximum torque and at which it produces its maximum power. For each speed, the average of at least two stabilised measurements is to be determined.

2.5.   Data to be recorded

The data to be recorded shall be those set out in the template of the test report referred to in Article 32(1) of Regulation (EU) No 168/2013.

  • 3. 
    Power and torque correction factors

3.1.   Definition of factors α1 and α2

3.1.1.   α1 and α2 shall be factors by which the torque and power measured are to be multiplied in order to determine the torque and power of an engine, taking account of the efficiency of the transmission (factor α2) used during the tests and in order to bring them within the reference atmospheric conditions specified in point 3.2.1 (factor α1). The power correction formula is as follows:

Equation Ap2.2-1:

Formula

where:

 

P0

=

the corrected power (i.e. the power under the reference conditions at the end of the crankshaft);

α1

=

the correction factor for reference atmospheric conditions;

α2

=

the correction factor for the efficiency of the transmission;

P

=

the power measured (power observed).

3.2.   Reference atmospheric conditions

3.2.1.   Temperature: 298,2 K (25 °C)

3.2.2.   Dry reference pressure (pso): 99 kPa (990 mbar)

Note: the dry reference pressure is based on a total pressure of 100 kPa and a water vapour pressure of 1 kPa.

3.2.3.   Atmospheric test conditions

 

3.2.3.1.

During the test, the atmospheric conditions shall lie within the following range:

283,2 K < T < 318,2 K

where T is test temperature (K).

3.3.   Determination of the correction factor α1 8

Equation Ap2.2-2:

Formula

where:

 

T

=

the absolute temperature of the ingested air

ps

=

the dry atmospheric pressure in kilopascals (kPa), i.e. the total barometric pressure minus the water vapour pressure.

3.3.1.   Equation Ap2.2-2 applies only if:

Formula

If the limit values are exceeded, the corrected value obtained shall be stated and the test conditions (temperature and pressure) stated exactly in the test report.

3.4.   Determination of the correction factor for mechanical efficiency of the transmission α2

Where:

 

the measuring point is the output side of the crankshaft, this factor is equal to 1;

 

the measuring point is not the output side of the crankshaft, this factor is calculated using the formula:

Equation Ap2.2-2:

Formula

where nt is the efficiency of the transmission located between the crankshaft and the measuring point.

This transmission efficiency nt is determined from the product (multiplication) of efficiency nj of each of the components of the transmission:

Equation Ap2.2-3:

Formula

Table Ap2.1-3

Efficiency nj of each of the components of the transmission

 

Type

Efficiency

Gear wheel

Spur gear

0,98

Helical gear

0,97

Bevel gear

0,96

Chain

Roller

0,95

Silent

0,98

Belt

Cogged

0,95

Vee

0,94

Hydraulic coupling or convertor

Hydraulic coupling9

0,92

Hydraulic convertor9

0,92

  • 4. 
    Maximum torque and maximum net power measurement tolerances

The maximum torque and the maximum net power of the engine as determined by the technical service to the satisfaction of the approval authority shall have a maximum acceptable tolerance of:

Table Ap2.2-4

Acceptable measurement tolerances

 

Measured power

Acceptable tolerance maximum torque and maximum power

≤ 11 kW

≤ 5 %

> 11 kW

≤ 2 %

Engine speed tolerance when performing maximum torque and net power measurements: ≤ 1,5 %

 

  • (1) 
    The torque measuring device shall be calibrated in order to take account of frictional losses. This accuracy may be ± 2 % for the measurements carried out at power levels less than 50 % of the maximum value. It will in all cases be ± 1 % for the measurement maximum torque.
  • (2) 
    Charge air-cooled engines shall be tested with charge air cooling, whether liquid or air-cooled, but if the manufacturer prefers, a test bench may replace the air-cooled cooler. In either case, the measurement of power at each speed shall be made with the same pressure drop of the engine air across the charge air cooler on the test-bench system as those specified by the manufacturer for the system on the complete vehicle.

Appendix 2.2.1

Measurement of maximum torque and maximum net engine power by means of the engine-temperature method

  • 1. 
    Test conditions
 

1.1.

The tests to determine maximum torque and maximum net power shall be carried out at full throttle, the engine being equipped as specified in Table Ap2.2-1

 

1.2.

The measurements shall be taken under normal operating conditions and the supply of induction air to the engine shall be adequate. Engines shall have been run in under the conditions recommended by their manufacturer. The combustion chambers of spark-ignition engines may contain deposits, but in limited quantities.

The test conditions selected, such as the temperature of the induction air, shall resemble the reference conditions (see point 3.2.) as closely as possible in order to reduce the magnitude of the correction factor.

 

1.3.

The temperature of the air ingested into the engine shall be measured at a maximum distance of 0,15 m from the air filter inlet or, if there is no filter, 0,15 m from the air inlet trumpet. The thermometer or thermocouple shall be protected against radiant heat and placed directly in the air stream. It shall also be shielded from fuel spray-back. A sufficient number of locations shall be used to give a representative average inlet temperature.

 

1.4.

The engine speed during a measurement run shall not deviate by more than ± 1 % from the selected speed while readings are taken.

 

1.5.

The brake load readings for the test engine shall be taken from the dynamometer when the temperature of the engine monitor has reached the set value, the speed of the engine being held virtually constant.

 

1.6.

Brake load, fuel consumption and inlet air-temperature readings shall be taken simultaneously; the reading adopted for measurement purposes is the average of two stabilised values. For brake load and fuel consumption, these values shall differ by less than 2 %.

 

1.7.

The fuel consumption readings shall begin when it is certain that the engine has reached a specific speed.

Where an automatically triggered device is used to measure rotational speed and consumption, the measurement shall last at least ten seconds; if the measuring device is manually controlled, it shall last at least 20 seconds.

 

1.8.

Where the engine is liquid-cooled, the temperature of the coolant at the outlet from the engine shall be kept within ± 5 K of the upper thermostatically controlled temperature specified by the manufacturer. If no temperature is specified by the manufacturer, the temperature recorded shall be 353,2 ± 5 K.

Where the engine is air-cooled, the temperature recorded at the spark-plug washer shall be the temperature specified by the manufacturer ± 10 K. If the manufacturer has not specified any temperature, that recorded shall be 483 ± 10 K.

 

1.9.

The temperature of the spark-plug washers on air-cooled engines shall be measured with a thermometer incorporating a thermocouple and a seal ring.

 

1.10.

The fuel temperature at the inlet of the injection pump or carburettor shall be maintained within the limits set by the manufacturer.

 

1.11.

The temperature of the lubricating oil, measured in the oil sump or at the outlet from the oil cooler, if fitted, shall be within the limits set by the manufacturer.

 

1.12.

The exhaust gas temperature shall be measured at a point at right angles to the exhaust orifice flange(s) or manifold(s).

 

1.13.

The fuel used shall be that referred to in appendix 2 of Annex II.

 

1.14.

If it is not possible to use the standard exhaust silencer for the test, a device shall be used that is compatible with the normal speed of the engine as specified by its manufacturer. In particular, when the engine is operating in the test laboratory, the exhaust gas extraction system shall not cause a pressure differing from atmospheric pressure by ± 740 Pa (7,40 mbar) in the extraction flue at the point of connection with the exhaust system of the vehicle, unless the manufacturer has deliberately specified the back pressure existing before the test, in which case the lower of the two pressures shall be used.

Appendix 2.3

Determination of the maximum torque and maximum net power of L-category vehicles equipped with a compression ignition engine

  • 1. 
    Accuracy of the measurement of full load torque and power

1.1.   Torque: ± 1 % of measured torque

1.2.   Engine speed

The measurement shall be accurate to within ± 1 % of the full-scale reading. Engine speed shall be measured preferably with an automatically synchronised revolution counter and chronometer (or counter-timer).

1.3.   Fuel consumption: ± 1 % of measured consumption.

1.4.   Fuel temperature: ± 2 K.

1.5.   Engine inlet air temperature: ± 2 K.

1.6.   Barometric pressure: ± 100 Pa.

1.7.   Pressure in inlet manifold (1): ± 50 Pa.

1.8.   Pressure in vehicle exhaust pipe: 200 Pa.

  • 2. 
    Tests to measure the maximum torque and maximum net engine power

2.1.   Accessories

2.1.1.   Accessories to be fitted

During the test it is possible to locate the accessories needed for operation of the engine in the application in question (as referred to in Table Ap2.3-1 on the test bench as far as possible in the positions that they would occupy for that application.

Table Ap2.3-1

Accessories to be fitted during the propulsion unit performance test in order to determine torque and net engine power

 

No

Accessories

Fitted for the torque and net power test

1

Air intake system

 

Induction manifold

 

Air filter (2)

 

Induction silencer

 

Crankcase emission-control system

 

Electrical control device, where fitted

If series-mounted: yes

2

Induction manifold heater

If series-mounted: yes (if possible, it shall be set in the most favourable position)

3

Exhaust system

 

Exhaust purifier

 

Exhaust manifold

 

Pipe work (3)

 

Silencer (3)

 

Exhaust pipe (3)

 

Exhaust brake (4)

 

Electrical control device, where fitted

If series-mounted: yes

5

Fuel injection system

 

Upstream filter

 

Filter

 

Fuel supply pump (5) and high pressure pump if applicable

 

High-pressure lines

 

Injector

 

Air intake valve (6), where fitted

 

Fuel pressure / flow regulator, where fitted

If series-mounted: yes

6

Maximum rotational speed-or power governors (2)

If series-mounted: yes

7

Liquid-cooling equipment

 

Engine bonnet

 

Bonnet air outlet

 

Radiator

 

Fan (4)

 

Fan cowl

 

Water pump

 

Thermostat (5)

If series-mounted: yes (6)

8

Air cooling

 

Cowl

 

Blower (7)  (8)

 

Cooling temperature-regulating device(s)

 

Auxiliary bench blower

If series-mounted: yes

9

Electrical equipment

If series-mounted: yes (9)

10

Super-charger or turbocharger, where fitted

 

Compressor driven directly by the engine or by the exhaust gases

 

Charge air cooler (3)

 

Coolant pump or fan (engine driven)

 

Coolant flow control device, where fitted.

If series-mounted: yes

11

Pollution-control devices (8)

If series-mounted: yes

12

Lubrication system

 

Oil feeder

 

Oil cooler, where fitted.

If series-mounted: yes

2.1.3.   Accessories to be removed

Certain vehicle accessories necessary only for the operation of the vehicle and which may be mounted on the engine shall be removed for the test.

The following non-exhaustive list is given as an example:

 

air compressor for brakes,

 

power-steering compressor,

 

suspension compressor,

 

air-conditioning system.

Where accessories cannot be removed, the power absorbed by them in the unloaded condition may be determined and added to the measured engine power.

2.1.4.   Compression-ignition engine starting accessories

For the accessories used in starting compression-ignition engines, the two following cases shall be considered:

 

(a)

electrical starting: the generator is fitted and supplies, where necessary, the accessories indispensable to the operation of the engine;

 

(b)

starting other than electrical: if there are any electrically-operated accessories indispensable to the operation of the engine, the generator is fitted to supply these accessories. Otherwise it is removed.

In either case, the system for producing and accumulating the energy necessary for starting is fitted and operated in the unloaded condition.

2.2.   Setting conditions

The conditions applying to settings during the tests to determine maximum torque and maximum net power are set out in Table Ap2.3-2.

Table Ap2.3-2

Setting conditions

 

1

Setting of injection pump delivery system

Setting carried out in accordance with the manufacturer’s specifications for series production applied, without any other change, to the use under consideration

2

Ignition or injection setting (timing curve)

3

(Electronic) Throttle control

4

Any other rotational speed governor setting

5

(Noise and tailpipe) emission abatement system settings and devices

2.3.   Test conditions

2.3.1.   The maximum-torque and net-power tests shall be conducted at full load fuel-injection pump setting, the engine being equipped as specified in Table Ap2.3-1.

2.3.2.   The measurements shall be carried out under normal, stabilised operating conditions with an adequate fresh-air supply to the engine. The engine shall have been run in accordance with the manufacturer’s recommendations. Combustion chambers may contain deposits, but in limited quantities.

2.3.3.   The test conditions selected, such as air inlet temperature, shall resemble reference conditions (see point 3.2.) as closely as possible in order to minimise the magnitude of the correction factor.

2.3.4.   The temperature of the (ambient) inlet air to the engine shall be measured at no more than 0,15 m upstream from the point of entry into the air cleaner or, if no air cleaner is used, within 0,15 m of the air-inlet trumpet. The thermometer or thermocouple shall be shielded from radiant heat and be placed directly in the airstream. It shall also be shielded from fuel spray-back.

A sufficient number of locations shall be used to give a representative average inlet temperature.

2.3.7.   No data shall be taken until torque, speed and temperature have remained substantially constant for at least 30 seconds.

2.3.8.   The engine speed during a run or reading shall not deviate from the selected speed by more than ± 1 % or ± 10 min–1, whichever is greater.

2.3.9.   Observed brake-load and inlet-air temperature data shall be taken simultaneously and shall be the average of two stabilised consecutive values. In the case of the brake load, these values shall not vary more than 2 %.

2.3.10.   The temperature of the coolant at the outlet from the engine shall be kept within ± 5 K of the upper thermostatically controlled temperature specified by the manufacturer. If no temperature is specified by the manufacturer, the temperature shall be 353,2 ± 5 K.

For air-cooled engines, the temperature at a point indicated by the manufacturer shall be kept between + 0 / – 20 K of the maximum temperature specified by the manufacturer under the reference conditions.

2.3.11.   The fuel temperature shall be measured at the inlet of the injection system and maintained within the limits set by the manufacturer.

2.3.12.   The temperature of the lubricating oil measured in the oil sump or at the outlet from the oil cooler, if fitted, shall be maintained within the limits established by the engine manufacturer.

2.3.13.   The outlet temperature of the exhaust gases shall be measured at right angles to the exhaust flange(s), manifold(s) or orifices.

2.3.14.   An auxiliary regulating system may be used if necessary to maintain the temperature within the limits specified in points 2.3.10., 2.3.11 and 2.3.12.

2.3.15.   Where an automatically triggered device is used to measure engine speed and consumption, the measurement shall last at least ten seconds; if the measuring device is manually controlled, it shall measure for at least 20 seconds.

2.3.16.   Test fuel

The test fuel to be used shall be the reference fuel referred to in Appendix 2 of Annex II.

2.3.17.   If it is not possible to use the standard exhaust silencer for the test, a device shall be used that is compatible with the engine’s normal operating conditions, and specified by the manufacturer.

During the laboratory tests in particular, when the engine is running, the exhaust gas extractor shall not, at the point where the exhaust system is connected to the test bench, give rise in the exhaust-gas extraction duct to a pressure differing from the atmospheric pressure by more than ± 740 Pa (7,4 mbar) unless the manufacturer has deliberately specified the back pressure existing before the test; in this case, the lower of the two pressures shall be used.

2.4.   Test procedure

Measurements shall be taken at a sufficient number of engine speeds to define correctly the complete power curve between the lowest and the highest engine speeds recommended by the manufacturer. This range of speeds shall include the speeds of revolution at which the engine produces its maximum torque and at which it produces its maximum power. For each speed, the average of at least two stabilised measurements is to be determined.

2.5.   Measurement of smoke index

In the case of compression-ignition engines, the exhaust gases shall be examined during the test for compliance with the requirements for test type II.

2.6.   Data to be recorded

The data to be recorded are those set out in the template of the test report referred to in Article 32(1) of Regulation (EU) No 168/2013.

  • 3. 
    Power and torque correction factors

3.1.   Definition of factors αd and α2

3.1.1.   αd and α2 shall be factors by which the torque and power measured are to be multiplied in order to determine the torque and power of an engine, taking account of the efficiency of the transmission (factor α2) used during the tests and in order to bring them within the reference atmospheric conditions specified in point 3.2.1 (factor αd). The power correction formula is as follows:

Equation Ap2.3-1:

Formula

where:

 

P0

=

the corrected power (i.e. the power under the reference conditions at the end of the crankshaft);

αd

=

the correction factor for reference atmospheric conditions;

α2

=

the correction factor for the efficiency of the transmission (see point 3.4 of Appendix 2.2.);

P

=

the power measured (power observed).

3.2.   Reference atmospheric conditions

3.2.1.   Temperature: 298,2 K (25 °C)

3.2.2.   Dry reference pressure (pso): 99 kPa (990 mbar)

Note: the dry reference pressure is based on a total pressure of 100 kPa and a water vapour pressure of 1 kPa.

3.2.3.   Atmospheric test conditions

3.2.3.1.   During the test, the atmospheric conditions shall lie within the following range:

 
 

283,2 K < T < 318,2 K

 
 

80 kPa ≤ ps ≤ 110 kPa

where:

 

T

=

test temperature (K);

ps

=

the dry atmospheric pressure in kilopascals (kPa), i.e. the total barometric pressure minus the water vapour pressure.

3.3.   Determination of the correction factor αd  (10)

Equation Ap2.3-2:

The power correction factor (αd) for compression-ignition engines at constant fuel rate is obtained by applying the formula:

Formula

where:

 

fa

=

the atmospheric factor

fm

=

the characteristic parameter for each type of engine and adjustment.

3.3.1.   Atmospheric factor fa

This factor indicates the effects of environmental conditions (pressure, temperature and humidity) on the air drawn in by the engine. The atmospheric factor formula differs according to type of engine.

3.3.1.1.   Naturally aspirated and mechanically supercharged engines

Equation Ap2.3-3:

Formula

where:

 

T

=

the absolute temperature of the ingested air (K)

ps

=

the dry atmospheric pressure in kilopascals (kPa), i.e. the total barometric pressure minus the water vapour pressure.

3.3.1.2.   Turbocharger engines or without cooling of inlet air

Equation Ap2.3-4:

Formula

3.3.2.   Engine factor fm

fm is a function of qc (fuel flow corrected) as follows:

Equation Ap2.3-5:

Formula

where:

Equation Ap2.3-6:

Formula

where:

 

q

=

the fuel flow in milligrams per cycle per litre of total swept volume (mg/(litre ·cycle))

r

=

the pressure ratio of compressor outlet and compressor inlet (r = 1 for naturally aspirated engines

3.3.2.1.   This formula is valid for a value interval of qc included between 40 mg/(litre · cycle) and 65 mg/(litre · cycle).

For qc values lower than 40 mg/(litre · cycle), a constant value of fm equal to 0.3 (fm = 0.3) will be taken.

For qc values higher than 65 mg/(litre · cycle), a constant value of fm equal to 1.2 = (fm = 1.2) will be taken (see the figure).

Figure Ap2.3-1

Characteristic parameter fm for each type of engine and adjustment as function of corrected fuel flow

Image

3.3.3.   Conditions to be complied with in the laboratory

For a test to be valid, the correction factor αd shall be such that:

0,9 αd ≤ 1.1

If these limits are exceeded, the corrected value obtained shall be given and the test conditions (temperature and pressure) stated precisely in the test report.

  • 4. 
    Measuring maximum torque and maximum net power tolerances

The tolerances set out in point 4 of Appendix 2.2 shall apply.

 

  • (1) 
    The complete air intake system shall be fitted as provided for the intended application:
 

where there is a risk of an appreciable effect on the engine power,

 

in the case of two-stroke engines,

 

when the manufacturer requests that this should be done. In other cases, an equivalent system may be used and a check should be made to ascertain that the intake pressure does not differ by more than 100 Pa from the limit specified by the manufacturer for a clean air filter.

  • (2) 
    The complete air intake system shall be fitted as provided for the intended application:
 

where there is a risk of an appreciable effect on the engine power,

 

in the case of two-stroke engines,

 

when the manufacturer requests that this should be done. In other cases, an equivalent system may be used and a check should be made to ascertain that the intake pressure does not differ by more than 100 Pa from the limit specified by the manufacturer for a clean air filter.

  • (3) 
    The complete exhaust system shall be fitted as provided for the intended application:
 

where there is a risk of an appreciable effect on the engine power,

 

in the case of two-stroke engines,

 

when the manufacturer requests that this should be done. In other cases an equivalent system may be installed provided the pressure measured at the exit of the engine exhaust system does not differ by more than 1 000 Pa from that specified by the manufacturer. The exit of the engine exhaust system is defined as a point 150 mm downstream from the termination of the part of the exhaust system mounted on the engine.

  • (4) 
    If an exhaust brake is incorporated in the engine, the throttle valve shall be held in the fully open position.
  • (5) 
    The fuel-feed pressure may be adjusted, if necessary, to reproduce the pressures existing in the particular engine application (particularly when a ‘fuel-return’ system is used).
  • (6) 
    The air-intake valve is the control valve for the pneumatic governor of the injection pump. The governor or the fuel-injection equipment may contain devices which can affect the amount of injected fuel.
  • (7) 
    The radiator, fan, fan nozzle, water pump and thermostat shall, on the test bench, occupy as far as possible the same position relative to each other as if they were on the vehicle. If any of them have a position on the test bench which is different from that on the vehicle, this shall be described and noted in the test report. The cooling-liquid circulation shall be operated by the engine water pump only. Cooling of the liquid may be produced either by the engine radiator or by an external circuit, provided that the pressure loss of this circuit and the pressure at the pump inlet remain substantially the same as those of the engine cooling system. The radiator shutter, if incorporated, shall be in the open position. Where the fan, radiator and cowl system cannot conveniently be fitted to the engine, the power absorbed by the fan when separately mounted in its correct position in relation to the radiator and cowl (if used) shall be determined at the speeds corresponding to the engine speeds used for measurement of the engine power either by calculation from standard characteristics or by practical tests. This power, corrected to the standard atmospheric conditions defined in point 4.2, shall be deducted from the corrected power.
  • (8) 
    Where a disconnectable or progressive fan or blower is incorporated, the test shall be carried out with the disconnectable fan (or blower) disconnected or with the progressive fan or blower running at maximum slip.
  • (9) 
    Minimum power of the generator: the power of the generator shall be no more than that required to operate accessories which are indispensable for the operation of the engine. If the connection of a battery is necessary, a fully-charged battery in good order shall be used.
  • Minimum power of the generator: the power of the generator shall be no more than that required to operate accessories which are indispensable for the operation of the engine. If the connection of a battery is necessary, a fully-charged battery in good order shall be used.

Appendix 2.4

Determination of the maximum torque and maximum power of L-category vehicles equipped with a hybrid propulsion

  • 1. 
    Requirements

1.1.   Hybrid propulsion including a positive ignition combustion engine

The maximum total torque and maximum total power of the hybrid propulsion assembly of combustion engine and electric motor shall be measured according to the requirements of Appendix 2.2.

1.2.   Hybrid propulsion including a compression ignition combustion engine

The maximum total torque and maximum total power of the hybrid propulsion assembly of combustion engine and electric motor shall be measured according to the requirements of Appendix 2.3.

1.3.   Hybrid propulsion including an electric motor

Paragraph 1.1. or 1.2. shall apply and, in addition, the maximum torque and maximum continuous rated power of the electric motor shall be measured according to the requirements of Appendix 3.

1.4.   If the hybrid technology used on the vehicle allows multi-mode hybrid running conditions, the same procedure shall be repeated for each mode and the highest measured propulsion unit performance value shall be taken as the final test result of the propulsion unit performance test procedure.

  • 2. 
    Manufacturer’s obligation

The vehicle manufacturer shall ensure that the test set-up of the test vehicle equipped with a hybrid propulsion shall result in the maximum attainable total torque and power being measured. Any series-mounted feature resulting in a higher propulsion unit performance in terms of maximum design vehicle speed, maximum total torque or maximum total power shall be regarded as a defeat device.

Appendix 3

Requirements concerning the methods for measuring the maximum torque and maximum continuous rated power of a pure electric propulsion type

  • 1. 
    Requirements
 

1.1.

L-category vehicles equipped with a pure electric propulsion shall meet all the relevant requirements with regard to the measurements of the maximum torque and the maximum thirty minute power of electric drive trains set out in UNECE regulation No 85.

 

1.2.

By means of derogation if the manufacturer can prove to the technical service to the satisfaction of the approval authority that the vehicle is physically not capable of achieving the thirty minutes speed the maximum fifteen minute speed may be used instead.

Appendix 4

Requirements concerning the method for measuring the maximum continuous rated power, switch-off distance and maximum assistance factor of an L1e category vehicle designed to pedal referred to in Article 3(94b) of Regulation (EU) No 168/2013

  • 1. 
    Scope
 

1.1.

Sub-category L1e-A vehicle;

 

1.2.

Sub-category L1e-B vehicle equipped with pedal assistance referred to in Article 3(94b) of Regulation (EU) No 168/2013.

  • 2. 
    Exemption

L1e vehicles within the scope of this Appendix shall be exempted from the requirements of Appendix 1.

  • 3. 
    Test procedures and requirements

3.1.   Test procedure to measure the maximum design vehicle speed up to which the auxiliary motor provides pedal assist.

The test procedure and measurements shall be performed in conformity with appendix 1 or alternatively with point 4.2.6.2. of EN 15194:2009.

3.2.   Test procedure to measure the maximum continuous rated power

The maximum continuous rated power shall be measured according to the test procedure set out in appendix 3.

3.3.   Test procedure to measure the maximum peak power

3.3.1.   Acceptable range maximum peak power as compared with maximum continuous rated power

The maximum peak power shall be ≤ 1,6 × maximum continuous rated power, measured as mechanical output power at the shaft of the motor unit.

3.3.2.   Tolerances

The maximum continuous rated and peak power values may deviate by +/– 5 % from the result of the measurements set out in appendix 3.

3.3.3.   Power correction factors

3.3.3.1.   Definition of factor α1 and α2

 

3.3.3.1.1.

α1 and α2 shall be factors by which the torque and power measured are to be multiplied in order to determine the torque and power of an engine, taking account of the efficiency of the transmission (factor α2) used during the tests and in order to bring them within the reference atmospheric conditions specified in point 3.2.1 (factor α1). The power correction formula is as follows:

Equation Ap 4-1:

Formula

where:

 

P0

=

the corrected power (i.e. the power under the reference conditions at the end of the crankshaft);

α1

=

the correction factor for reference atmospheric conditions and measurement uncertainties shall be 1,10;

α2

=

the correction factor for the efficiency of the transmission and shall be 1,05, unless the real values of the drive train losses are determined;

P

=

the power measured (power observed) at the tyre.

3.3.4.   Atmospheric test conditions

3.3.4.1.   During the test, the atmospheric conditions shall lie within the following range:

278,2 K < T < 318,2 K

where:

T= test temperature (K)

3.3.5.   Test preparations

3.3.5.1.   The test vehicle shall be mounted on a test bench.

3.3.5.2.   The test vehicle shall be powered by its corresponding battery. If several types of batteries are released for the vehicle, the battery with maximum capacity shall be used.

3.3.5.3.   The propulsion batter(y)/(ies) shall be fully charged.

3.3.5.4.   One motor of the test bench shall be attached to the crank or crank axis of the test vehicle (test-bench crank motor). This motor shall be variable as regards rotation speed and torque to simulate the driving actions of the driver. The test-bench crank motor shall reach a rotation frequency of 90 min–1 and a maximum torque of 50 Nm to cover the typical performance ranges of drivers.

3.3.5.5.   A brake or a motor shall be attached to a drum below the rear wheel of the test vehicle to simulate the losses and inertia of the vehicle.

3.3.5.6.   For vehicles equipped with a motor driving the front wheel, an additional brake or an additional motor shall be attached to a drum below the front wheel, simulating the losses and inertia of the vehicle.

3.3.5.7.   If the assistance level of the vehicle is variable, it shall be set to maximum assistance.

3.3.5.8.   Peripheral devices powered by the power supply of the vehicle shall be dismounted or switched off. If such devices are necessary for motor assistance, they may remain powered on if the manufacturer has sufficiently justified this to the technical service and to the satisfaction of the approval authority.

3.3.5.9.   Prior to start of the measurement, the cadence of the test-bench crank motor shall be swept from low to high cadence until a maximum mechanical output power is reached. For this preconditioning, a medium vehicle gear shall be used at an average test-bench crank motor torque of 25 Nm.

3.3.5.10.   Subsequently, the test-bench crank motor torque shall be varied to reach the maximum mechanical output of the motor. After adjustment of the test-bench crank motor torque, the gear of the vehicle shall be adjusted for maximum output power. The test-bench crank motor conditions with maximum vehicle output power shall be reported and used for measuring the maximum power. They shall be monitored during the measurement. For this point of operation, the brakes/motors of the test bench for the front and the rear wheel shall be adjusted so that the rotation frequencies remain constant.

3.4.   Test procedure to measure and calculate the maximum motor power

3.4.1.   The maximum power shall be measured for five minutes (maximum five minute power). If the power is not constant, the average power during the five minute measurement shall be taken as the maximum five minute power.

3.4.2.   The maximum motor power of the vehicle shall be calculated from the sum of the mechanical brake motor powers minus the mechanical input power of the test-bench crank motor.

3.4.3.   Data to be recorded

The data to be recorded are those set out in the template of the test report referred to in Article 32(1) of Regulation (EU) No 168/2013.

3.5.   Test procedure to measure the switch-off distance

After stopping with pedalling, the assistance of the motor shall switch off in a driving distance ≤ 3 m. The testing vehicle speed is 90 % of the maximum assistance speed. The measurements shall be taken in accordance with EN 15194:2009.

3.5.   Test procedure to measure the maximum assistance factor

3.5.1.   The ambient temperature shall be between 278,2 K and 318,2 K.

3.5.2.   The test vehicle shall be powered by its corresponding propulsion battery. The propulsion battery with maximum capacity shall be used for this test procedure.

3.5.3.   The battery shall be fully charged using the charger to be specified by the vehicle manufacturer.

3.5.4.   One motor of the test bench shall be attached to the crank or crank axis of the test vehicle. This test bench crank motor shall simulate the driving action of the rider and shall be capable of running variable rotation speeds and torques. It shall reach a rotation frequency of 90 rpm and a maximum continuous rated torque of 50 Nm.

3.5.5.   A brake or a motor simulating the losses and inertia of the vehicle shall be attached to a drum below the rear wheel of the test vehicle.

3.5.6.   For vehicles equipped with a motor driving the front wheel, an additional brake or an additional motor shall be attached to a drum below the front wheel, simulating the losses and inertia of the vehicle.

3.5.7.   If the assistance level of the vehicle is variable, it has to be set to maximum assistance.

3.5.8.   The following points of operation shall be tested:

Table Ap4-1

Operation points to test the maximum assistance factor

 

Point of operation

Simulated rider input power (+/– 10 %) in (W)

Target vehicle speed (1) (+/– 10 %) in (km/h)

Desired pedalling cadence (2) in (rpm)

A

80

20

60

B

120

35

70

C

160

40

80

3.5.9.   The maximum assistance factor shall be calculated according to the following formula:

Equation Ap4-1:

Formula

where:

The mechanical motor power of the test vehicle shall be calculated from the sum of the mechanical brake motor power minus the mechanical input power of the test bench crank motor (in W).

 

  • (1) 
    If the target vehicle speed cannot be reached, the measurement shall be performed at the maximum vehicle speed reached
  • (2) 
    select gear closest to required rpm rate for the point of operation

ANNEX XI

Vehicle propulsion family with regard to environmental performance demonstration tests

  • 1. 
    Introduction

1.1.   In order to alleviate the test burden on manufacturers when demonstrating the environmental performance of vehicles these may be grouped as a vehicle propulsion family. One or more parent vehicles shall be selected from this group of vehicles by the manufacturer to the satisfaction of the approval authority that shall be used to demonstrate environmental performance test types I to VIII. Parent vehicles to demonstrate test type IX on sound level shall follow the requirements set out in the UNECE regulations referred to in point 2 of Annex IX.

1.2.   An L-category vehicle may continue to be regarded as belonging to the same vehicle propulsion family provided that the vehicle variant, version, propulsion, pollution-control system and OBD parameters listed in Table 11-1 are identical or remain within the prescribed and declared tolerances.

1.3.   Vehicle and propulsion family attribution with regard to environmental tests

For the environmental test types I to XIII a representative parent vehicle shall be selected within the boundaries set by the classification criteria laid down in point 3.

  • 2. 
    Definitions
 

2.1.

‘variable cam phasing or lift’ means allowing the lift, the opening and closing duration or timing of the intake or exhaust valves to be modified while the engine is in operation;

 

2.2.

‘communication protocol’ means a system of digital message formats and rules for messages exchanged in or between computing systems or units;

 

2.3.

‘common rail’ means a fuel supply system to the engine in which a common high pressure is maintained;

 

2.4.

‘intercooler’ means a heat exchanger that removes waste heat from the compressed air by a charger before entering into the engine, thereby improving volumetric efficiency by increasing intake air charge density;

 

2.5.

‘electronic throttle control’ (ETC) means the control system consisting of sensing of driver input via the accelerator pedal or handle, data processing by the control unit(s), resulting actuation of the throttle and throttle position feedback to the control unit in order to control the air charge to the combustion engine;

 

2.6.

‘boost control’ means a device to control the boost level produced in the induction system of a turbocharged or supercharged engine;

 

2.7.

‘SCR system’ means a system capable of converting gaseous pollutants into harmless or inert gases by injecting a consumable reagent, which is a reactive substance to reduce tailpipe emissions and which is adsorbed onto a catalytic converter;

 

2.8.

‘lean NOx adsorber’ means a storage of NOx fitted into the exhaust system of a vehicle which is purged by the release of a reactant in the exhaust flow;

 

2.9.

‘cold-start device’ means a device that temporarily enriches the air/fuel mixture of the engine, thus assisting the engine to start;

 

2.10.

‘starting aid’ means a device which assists engine start up without enrichment of the air/fuel mixture such as glow plugs, injection timing and spark delivery adaptations;

‘exhaust gas recirculation (EGR) system’ means part of the exhaust gas flow led back to or remaining in the combustion chamber of an engine in order to lower the combustion temperature;

  • 3. 
    Classification criteria

3.1.   Test types I, II, V, VII and VIII (‘X’ in Table 11-1 means ‘applicable’)

Table 11-1

Classification criteria propulsion family with regard to test types I, II, V, VII and VIII

 

#

Classification criteria description

Test type I

Test type II

Test type V

Test type VII

Test type VIII

 

Stage I

Stage II

1.

Vehicle

1.1.

category;

X

X

X

X

X

X

1.2.

sub-category;

X

X

X

X

X

X

1.3.

the inertia of a vehicle variant(s) or version(s) within two inertia categories above or below the nominal inertia category;

X

 

X

X

X

X

1.4.

overall gear ratios (+/– 8 %);

X

 

X

X

X

X

2.

Propulsion family characteristics

2.1.

number of engines or electric motors;

X

X

X

X

X

X

2.2.

hybrid operation mode(s) (parallel / sequential / other);

X

X

X

X

X

X

2.3.

number of cylinders of the combustion engine;

X

X

X

X

X

X

2.4.

engine capacity (+/– 2 %) (1) of the combustion engine;

X

X

X

X

X

X

2.5.

number and control (variable cam phasing or lift) of combustion engine valves;

X

X

X

X

X

X

2.6.

monofuel / bifuel / flex fuel H2NG / multifuel;

X

X

X

X

X

X

2.7.

fuel system (carburettor / scavenging port / port fuel injection / direct fuel injection / common rail / pump-injector / other);

X

X

X

X

X

X

2.8.

fuel storage (2);

       

X

X

2.9.

type of cooling system of combustion engine;

X

X

X

X

X

X

2.10.

combustion cycle (PI / CI / two-stroke / four-stroke / other);

X

X

X

X

X

X

2.11.

intake air system (naturally aspirated / charged (turbocharger / super-charger) / intercooler / boost control) and air induction control (mechanical throttle / electronic throttle control / no throttle);

X

X

X

X

X

X

3.

Pollution control system characteristics

3.1.

propulsion exhaust (not) equipped with catalytic converter(s);

X

X

X

X

 

X

3.1.

catalytic converter(s) type;

X

X

X

X

 

X

3.1.1.

number and elements of catalytic converters;

X

X

X

X

 

X

3.1.2.

size of catalytic converters (volume of monolith(s) +/– 15 %);

X

X

X

X

 

X

3.1.3.

operation principle of catalytic activity (oxidising, three-way, heated, SCR, other.);

X

X

X

X

 

X

3.1.4.

precious metal load (identical or higher);

X

X

X

X

 

X

3.1.

precious metal ratio (+/– 15 %);

X

X

X

X

 

X

3.1.5.

substrate (structure and material);

X

X

X

X

 

X

3.1.6.

cell density;

X

X

X

X

 

X

3.1.7.

type of casing for the catalytic converter(s);

X

X

X

X

 

X

3.2.

propulsion exhaust (not) equipped with particulate filter (PF);

X

X

X

X

 

X

3.2.1.

PF types;

X

X

X

X

 

X

3.2.2.

number and elements of PF;

X

X

X

X

 

X

3.2.3.

size of PF (volume of filter element +/– 10 %);

X

X

X

X

 

X

3.2.4.

operation principle of PF (partial / wall-flow / other);

X

X

X

X

 

X

3.2.5.

active surface of PF;

X

X

X

X

 

X

3.3.

propulsion (not) equipped with periodically regenerating system;

X

X

X

X

 

X

3.3.1.

periodically regenerating system type;

X

X

X

X

 

X

3.3.2.

operation principle of periodically regenerating system;

X

X

X

X

 

X

3.4.

propulsion (not) equipped with selective catalytic converter reduction (SCR) system;

X

X

X

X

 

X

3.4.1.

SCR system type;

X

X

X

X

 

X

3.4.2.

operation principle of periodically regenerating system;

X

X

X

X

 

X

3.5.

propulsion (not) equipped with lean NOx trap /absorber;

X

X

X

X

 

X

3.5.1.

lean NOx trap / absorber type;

X

X

X

X

 

X

3.5.2.

operation principle of lean NOx trap / absorber;

X

X

X

X

 

X

3.6.

propulsion (not) equipped with a cold-start device or starting aid device(s);

X

X

X

X

 

X

3.6.1.

cold-start or starting aid device type;

X

X

X

X

 

X

3.6.2.

operation principle of cold start or starting aid device(s);

X

X

X

X

X

X

3.6.3.

Activation time of cold-start or starting aid device(s) and /or duty cycle (only limited time activated after cold start / continuous operation);

X

X

X

X

X

X

3.7.

propulsion (not) equipped with O2 sensor for fuel control;

X

X

X

X

X

X

3.7.1.

O2 sensor types;

X

X

X

X

X

X

3.7.2.

operation principle of O2 sensor (binary / wide range / other);

X

X

X

X

X

X

3.7.3.

O2 sensor interaction with closed-loop fuelling system (stoichiometry / lean or rich operation);

X

X

X

X

X

X

3.8.

propulsion (not) equipped with exhaust gas recirculation (EGR) system;

X

X

X

X

 

X

3.8.1.

EGR system types;

X

X

X

X

 

X

3.8.2.

operation principle of EGR system (internal / external);

X

X

X

X

 

X

3.8.3.

maximum EGR rate (+/– 5 %);

X

X

X

X

 

X

 

3.2.   Test types III and IV (‘X’ in Table 11-2 means ‘applicable’)

Table 11-2

Classification criteria propulsion family with regard to test types III

 

#

Classification criteria description

Test type III

Test type IV

1.

Vehicle

1.1.

Category;

X

X

1.2.

Subcategory;

 

X

2.

System

2.1.

propulsion (not) equipped with crankcase ventilation system;

X

 

2.1.1.

crankcase ventilation system type;

X

 

2.1.2.

operation principle of crank case ventilation system (breather / vacuum / overpressure);

X

 

2.2.

propulsion (not) equipped with evaporative emission control system;

 

X

2.2.1.

evaporative emission control system type;

 

X

2.2.2.

operation principle of evaporative emission control system (active / passive / mechanically or electronically controlled);

 

X

2.2.3.

identical basic principle of fuel/air metering (e.g. carburettor / single point injection / multi point injection / engine speed density through MAP/ mass airflow);

 

X

2.2.4.

identical material of the fuel tank and liquid fuel hoses is identical;

 

X

2.2.5.

the fuel storage volume is within a range of +/– 50 %;

 

X

2.2.

the setting of the fuel storage relief valve is identical;

 

X

2.2.6.

identical method of storage of the fuel vapour (i.e. trap form and volume, storage medium, air cleaner (if used for evaporative emission control) etc.);

 

X

2.2.7.

identical method of purging of the stored vapour (e.g. air flow, purge volume over the driving cycle);

 

X

2.2.8.

identical method of sealing and venting of the fuel metering system;

 

X

  • 5. 
    Extension of type-approval regarding test type IV

5.1.   The type-approval shall be extended to vehicles equipped with a control system for evaporative emissions which meet the evaporative emission control family classification criteria listed in point 5.3. The worst-case vehicle with regard to the cross-section and approximate hose length shall be tested as a parent vehicle.

5.2.   The manufacturer may request to use one of the following approaches based on a ‘certification by design’ strategy to extend the approval for evaporative emissions:

5.2.1.   Carry-across approach

 

5.2.1.1.

if the vehicle manufacturer has certified a fuel tank of generic shape (‘parent fuel tank’), these test data may be used to certify ‘by design’ any other fuel tank provided that it is designed with the same characteristics as regards material (including additives), method of production and average wall thickness.

 

5.2.1.2.

if a fuel tank manufacturer has certified the material (including additives) of a ‘parent’ fuel tank on the basis of a complete permeability or permeation test, the vehicle manufacturer may use these test data to certify its fuel tank by design, provided it is designed with the same characteristics as regards material (including additives), method of production and average wall thickness.

5.2.2.   Worst-case configuration approach

If the vehicle manufacturer has successfully carried out permeability or permeation testing on a worst-case fuel tank configuration, these test data may be used to certify by design other fuel tanks which are otherwise similar in terms of material (including additives), fuel pump plate and filler cap/neck. The worst-case configuration shall be the fuel tank design with the thinnest walls or the smallest interior surface area.

 

  • (1) 
    maximum 30 % acceptable for test type VIII
  • (2) 
    Only for vehicles equipped with storage for gaseous fuel

ANNEX XII

Amendment of part A of Annex V to Regulation (EU) No 168/2013

 

1.

Part A of Annex V to Regulation (EU) No 168/2013 is replaced by the following:

‘(A)   Environmental tests and requirements

L-category vehicles may be type-approved only if they comply with the following environmental requirements:

 

Test type

Description

Requirements: limit values

Subclassification criteria in addition to Article 2 and Annex I

Requirements: test procedures

I

Tailpipe emissions after cold start

Annex VI (A)

Point 4.3 of Annex II to Commission Delegated Regulation (EU) No 134/2014

Annex II to Commission Delegated Regulation (EU) No 134/2014

II

PI or Hybrid (5) equipped with PI: emissions at idling and increased idling speed

 

CI or Hybrid with CI engine: free acceleration test

Directive 2009/40/EC (6)

Point 4.3 of Annex II to Commission Delegated Regulation (EU) No 134/2014

Annex III to Commission Delegated Regulation (EU) No 134/2014

III

Emissions of crankcase gases

Zero emission, closed crankcase. Crankcase emissions shall not be discharged directly into the ambient atmosphere from any vehicle throughout its useful life.

Point 3.2 of Annex XI to Commission Delegated Regulation (EU) No 134/2014

Annex IV to Commission Delegated Regulation (EU) No 134/2014

IV

Evaporative emissions

Annex VI (C)

Point 3.2 of Annex XI to Commission Delegated Regulation (EU) No 134/2014

Annex V to Commission Delegated Regulation (EU) No 134/2014

V

Durability of pollution control devices

Annexes VI and VII

SRC-LeCV: point 2 of Appendix 1 to Annex VI to Commission Delegated Regulation (EU) No 134/2014

USA EPA AMA: point 2.1 of Appendix 2 to Annex VI to Commission Delegated Regulation (EU) No 134/2014

Annex VI to Commission Delegated Regulation (EU) No 134/2014

VI

A test-type VI has not been attributed

Not applicable

Not applicable

Not applicable

VII

CO2 emissions, fuel and/or electric energy consumption and electric range

Measurement and reporting, no limit value for type- approval purposes

Point 4.3 of Annex II to Commission Delegated Regulation (EU) No 134/2014

Annex VII to Commission Delegated Regulation (EU) No 134/2014

VIII

OBD environmental tests

Annex VI (B)

Point 4.3 of Annex II to Commission Delegated Regulation (EU) No 134/2014

Annex VIII to Commission Delegated Regulation (EU) No 134/2014

IX

Sound level

Annex VI (D)

When UNECE regulations Nos 9, 41, 63 or 92 replace the EU proprietary requirements set out in the delegated act on environmental and propulsion performance requirements, the (sub-) classification criteria laid down in those UNECE regulations (Annex 6) shall be selected with reference to test type IX sound level tests.

Annex IX to Commission Delegated Regulation (EU) No 134/2014’

 

This summary has been adopted from EUR-Lex.